• 제목/요약/키워드: 세종 격틀

검색결과 16건 처리시간 0.018초

워드 임베딩과 유의어를 활용한 단어 의미 범주 할당 (Assignment Semantic Category of a Word using Word Embedding and Synonyms)

  • 박다솔;차정원
    • 정보과학회 논문지
    • /
    • 제44권9호
    • /
    • pp.946-953
    • /
    • 2017
  • 의미역 결정은 서술어와 논항들 사이의 의미 관계를 결정하는 문제이다. 의미역 결정을 위해 의미 논항 역할 정보와 의미 범주 정보를 사용해야 한다. 세종 전자사전은 의미역을 결정하는데 사용한 격틀 정보가 포함되어 있다. 본 논문에서는 워드 임베딩과 유의어를 활용하여 세종 전자사전을 확장하는 방법을 제시한다. 연관 단어가 유사한 벡터 표현을 갖도록 하기 위해 유의어 사전의 정보를 사용하여 재구성된 벡터를 생성한다. 기존의 워드 임베딩과 재구성된 벡터를 사용하여 동일한 실험을 진행한다. 워드 임베딩을 이용한 벡터로 단어의 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 32.19%이고, 확장한 의미 범주 할당의 시스템 성능은 51.14%이다. 재구성된 벡터를 이용한 단어의 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 33.33%이고, 확장한 의미 범주 할당의 시스템 성능은 53.88%이다. 의미 범주가 할당되지 않은 새로운 단어에 대해서 논문에서 제안한 방법으로 의미 범주를 할당하여 세종 전자사전의 의미 범주 단어 확장에 대해 도움이 됨을 증명하였다.

격틀 정보를 이용한 한국어 공간 사건 관계 추출 (Korean Space Event Relation Extraction Using Case-frame)

  • 곽수정;김보겸;박용민;이재성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.798-801
    • /
    • 2014
  • 문서에서 공간 개체와 사건을 찾아내고, 이들 간의 위상적 관계나 의미적 관계를 찾아내는 것을 공간정보 추출이라고 한다. 본 논문에서는 언어분석 결과와 세종사전을 활용해 자연언어 문서에서 동작(motion) 사건 관계 중심의 공간 정보를 추출하는 규칙 기반 시스템을 제안하였다. 수동으로 구축한 20문장의 평가 집합에 대해 사건 관계 추출은 27.45%의 F-measure 성능을 보였다. 공간보다 비교적 많은 연구가 진행된 시간 관계 추출에 대한 최신 연구의 성능이 30~35% 수준[1]인 것을 고려하여 볼 때, 본 연구는 공간 사건 관계 추출의 기초 연구로 의미가 있다.

대규모 말뭉치와 전산 언어 사전을 이용한 의미역 결정 규칙의 구축 (Rule Construction for Determination of Thematic Roles by Using Large Corpora and Computational Dictionaries)

  • 강신재;박정혜
    • 정보처리학회논문지B
    • /
    • 제10B권2호
    • /
    • pp.219-228
    • /
    • 2003
  • 본 논문은 한국어정보처리 과정에서 구문 관계를 의미역으로 사상시키기 위한 규칙을 효과적으로 구축하는 방법을 제시하고 있다. 의미역의 결정은 의미 분석의 핵심 작업 중 하나이며 자연어처리에서 해결해야 하는 매우 중요한 문제 중 하나이다. 일반적인 언어학 지식과 경험만 가지고 의미역 결정 규칙을 기술하는 것은 작업자의 주관에 따라 결과가 많이 달라질 수 있으며, 또 모든 경우를 다룰 수 있는 규칙의 구축은 불가능하다. 하지만 본 논문에서 제시하는 방법은 대량의 원시 말뭉치를 분석하여 실제 언어의 다양한 사용례를 반영하며, 또 수십 명의 한국어 학자들이 심도 있게 구축하고 있는 세종전자사전의 격틀 정보도 함께 고려하기 때문에 보다 객관적이고 효율적인 방법이라 할 수 있다. 의미역을 보다 정확하게 결정하기 위해 구문관계, 의미부류, 형태소 정보, 이중주어의 위치정보 등의 자질 정보를 사용하였으며, 특히 의미부류의 사용으로 인해 규칙의 적용률이 향상되는 효과를 가져올 수 있었다.

비지도 학습을 기반으로 한 한국어 부사격의 의미역 결정 (Unsupervised Semantic Role Labeling for Korean Adverbial Case)

  • 김병수;이용훈;이종혁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권2호
    • /
    • pp.112-122
    • /
    • 2007
  • 말뭉치를 이용하여 통계적으로 의미역 결정(semantic role labeling)을 하기 위해서는, 의미역을 태깅하는 작업이 필수적이다. 그러나 한국어의 경우 의미역이 태깅된 대량의 말뭉치를 구하기 힘들며, 이를 직접 구축하기 위해서는 많은 시간과 노력이 필요한 문제점이 있다. 본 논문에서는 비지도 학습의 하나인 self-training 알고리즘을 적용하여, 의미역이 태깅되지 않은 말뭉치로부터 의미역을 결정하는 방법을 제안한다. 이를 위해, 세종 용언 전자사전의 격틀 정보를 이용하여 자동으로 학습 말뭉치를 구축하였으며, 확률 모델을 적용하여 점진적으로 학습하였다. 그 결과, 4개의 부사격 조사에 대해 평균적으로 83.00%의 정확률을 보였다.

기계 번역 의미 대역 패턴을 이용한 한국어 복합 명사 의미 결정 방법 (A Method of Word Sense Disambiguation for Korean Complex Noun Phrase Using Verb-Phrase Pattern and Predicative Noun)

  • 양성일;김영길;박상규;나동렬
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2003년도 제15회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.246-251
    • /
    • 2003
  • 한국어의 언어적 특성에 의해 빈번하게 등장하는 명사와 기능어의 나열은 기능어나 연결 구문의 잦은 생략현상에 의해 복합 명사의 출현을 발생시킨다. 따라서, 한국어 분석에서 복합 명사의 처리 방법은 매우 중요한 문제로 인식되었으며 활발한 연구가 진행되어 왔다. 복합 명사의 의미 결정은 복합 명사구 내 단위 명사간의 의미적인 수식 관계를 고려하여 머리어의 선택과 의미를 함께 결정할 필요가 있다. 본 논문에서는 정보 검색의 색인어 추출 방법에서 사용되는 복합 명사구 내의 서술성 명사 처리를 이용하여 복합 명사의 의미 결정을 인접 명사의 의미 공기 정보가 아닌 구문관계에 따른 의미 공기 정보를 사용하여 분석하는 방법을 제시한다. 복합 명사구 내에서 구문적인 관계는 명사구 내에 서술성 명사가 등장하는 경우 보-술 관계에 의한 격 결정 문제로 전환할 수 있다. 이러한 구문 구조는 명사 의미를 결정할 수 있는 추가적인 정보로 활용할 수 있으며, 이때 구문 구조 파악을 위해 구축된 의미 제약 조건을 활용하도록 한다. 구조 분석에서 사용되는 격틀 정보는 동사와 공기하는 명사의 구문 관계를 분석하기 위해 의미 정보를 제약조건으로 하여 구축된다. 이러한 의미 격틀 정보는 단문 내 명사들의 격 결정과 격을 채우는 명사 의미를 결정할 수 있는 정보로 활용된다. 본 논문에서는 현재 개발중인 한영 기계 번역 시스템 Tellus-KE의 단문 단위 대역어 선정을 위해 구축된 의미 대역패턴인 동사구 패턴을 사용한다. 동사구 패턴에 기술된 한국어의 단문 단위 의미 격 정보를 사용하는 경우, 격결정을 위해 사용되는 의미 제약 조건이 복합 명사의 중심어 선택과 의미 결정에 재활용 될 수 있으며, 병렬말뭉치에 의해 반자동으로 구축되는 의미 대역 패턴을 사용하여 데이터 구축의 어려움을 개선하고자 한다. 및 산출 과정에 즉각적으로 활용될 수 있을 것이다. 또한, 이러한 정보들은 현재 구축중인 세종 전자사전에도 직접 반영되고 있다.teness)은 언화행위가 성공적이라는 것이다.[J. Searle] (7) 수로 쓰인 것(상수)(象數)과 시로 쓰인 것(의리)(義理)이 하나인 것은 그 나타난 것과 나타나지 않은 것들 사이에 어떠한 들도 없음을 말한다. [(성중영)(成中英)] (8) 공통의 규범의 공통성 속에 규범적인 측면이 벌써 있다. 공통성에서 개인적이 아닌 공적인 규범으로의 전이는 규범, 가치, 규칙, 과정, 제도로의 전이라고 본다. [C. Morrison] (9) 우리의 언어사용에 신비적인 요소를 부인할 수가 없다. 넓은 의미의 발화의미(utterance meaning) 속에 신비적인 요소나 애정표시도 수용된다. 의미분석은 지금 한글을 연구하고, 그 결과에 의존하여서 우리의 실제의 생활에 사용하는 $\ulcorner$한국어사전$\lrcorner$ 등을 만드는 과정에서, 어떤 의미에서 실험되었다고 말할 수가 있는 언어과학의 연구의 결과에 의존하여서 수행되는 철학적인 작업이다. 여기에서는 하나의 철학적인 연구의 시작으로 받아들여지는 이 의미분석의 문제를 반성하여 본다.반인과 다르다는 것이 밝혀졌다. 이 결과가 옳다면 한국의 심성 어휘집은 어절 문맥에 따라서 어간이나 어근 또는 활용형 그 자체로 이루어져 있을 것이다.으며, 레드 클로버 + 혼파 초지가 건물수량과 사료가치를 높이는데 효과적이었다.\ell}$ 이었으며 , yeast extract 첨가(添加)하여 배양시(培養時)는 yeast extract 농도(濃度)가 증가(增加)함에 따라 단백질(蛋白質) 함량(含量)도 증가(增加)하였다. 7. CHS-13 균주(菌株)의 RNA 함량(

  • PDF

한국어 전산처리에서 규칙과 확률을 이용한 구문관계에 따른 의미역 결정 (Determination of Thematic Roles according to Syntactic Relations Using Rules and Statistical Models in Korean Language Processing)

  • 강신재;박정혜
    • 한국산업정보학회논문지
    • /
    • 제8권1호
    • /
    • pp.33-42
    • /
    • 2003
  • 본 논문은 한국어정보처리 과정에서 규칙과 확률을 이용하여 구문 관계를 의미역으로 사상시키는 방법을 제시하고 있다. 의미역의 결정은 의미 분석의 핵심 작업 중 하나이며 자연어처리에서 해결해야 하는 매우 중요한 문제중 하나이다. 일반적인 언어학 지식과 경험만 가지고 의미역 결정 규칙을 기술하는 것은 작업자의 주관에 따라 결과가 많이 달라질 수 있으며, 또 모든 경우를 다룰 수 있는 규칙의 구축은 불가능하다. 하지만 본 논문에서 제시하는 혼합 방법은 대량의 원시 말뭉치를 분석하여 실제 언어의 다양한 사용례를 반영하며, 또 수십 명의 한국어학자들이 심도 있게 구축하고 있는 세종전자사전의 격틀 정보도 함께 고려하기 때문에 보다 객관적이고 효율적인 방법이라 할 수 있다. 의미역을 보다 정확하게 결정하기 위해 구문관계, 의미부류, 형태소 정보, 이중주어의 위치정보 등의 자질 정보를 사용하였으며, 특히 의미부류의 사용으로 인해 적용률이 향상되는 효과를 가져올 수 있었다.

  • PDF