• Title/Summary/Keyword: 세부특징

Search Result 458, Processing Time 0.038 seconds

Segmentation of Motion Vector Using Seeded Split-Merge Clustering (SSM 클러스터링을 이용한 동작벡터의 분할)

  • 이동하;장석우;최형일
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.493-495
    • /
    • 2000
  • 동영상에서 동작물체 영역과 배경 영역을 추출하는 방법에는 크게 원본 영상들의 특징값을 이용하는 방법, 동작벡터 혹은 광류를 이용하는 방법, 그리고 동작벡터와 원본영상을 모두 이용하는 방법의 세가지가 있다. 이중 많이 사용되고 있는 동작벡터를 이용하는 방법에는 히스토그램을 이용하는 방법과 동작벡터의 특징값에 대한 클러스터링을 이용해 분할 하는 방법이 있는데. 이들 기존 방법은 몇가지 문제점을 가지고 있다. 전자는 구현이 간단하나 세부적인 영역분할이 어렵다는 문제점이 있고, 후자는 일반적으로 높은 계산 복잡도를 가지며 초기 클러스터 개수 선정에 문제를 지니고 있다. 본 논문에서는 낮은 계산 복잡도를 가지며 클러스터 할당과 병합된 클러스터 중심 계산에 있어 보다 적응적인 Seeded Split-Merge 클러스터링 방법을 제안한다.

  • PDF

Implementation of Content-based News Video Retrieval System for Efficient Video Data Management (효율적인 데이터 관리를 위한 내용기반 뉴스 비디오 검색 시스템 구현)

  • Nam, Yun-Seong;Yang, Dong-Il;Bae, Jong-Sik;Choi, Hyung-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.755-758
    • /
    • 2005
  • 뉴스 데이터를 구조적으로 분할하고 의미적으로 분류하여 내용별로 세분화하여 검색하는 방법을 제안한다. 구조적 분할은 공간 밝기 분포와 명암도의 불연속성 그리고 시간적인 관계 등 프레임간의 상관 정보를 이용하여 장면을 분할한다. 의미적 분류는 키 프레임에서 추출된 특징 정보를 사전 지식 정보와 비교하여 뉴스 비디오의 세부 내용을 기사별로 분류한다. 뉴스의 진행이 앵커 프레임을 중심으로 주기적으로 반복된다는 특징을 이용하여 앵커 장면과 비 앵커 장면으로 기사를 분류한다. 비 앵커 장면은 연설장면, 인터뷰장면, 일반 장면으로 세분화하고 기사별로 분류하여 검색하도록 한다. 또한 뉴스 아이콘에 의한 요약 검색 기능 그리고 자막 통합 처리에 의한 자막 검색을 하여 뉴스 비디오를 내용별로 분류하고 인덱싱하여 신속하게 뉴스 비디오를 검색할 수 있도록 설계한다.

  • PDF

Efficient Learning Method through an Ananlysis of Learning pattern based on the Sasang Consitution (사상체질에 따른 학습패턴 분석을 통한 효율적인 학습방법)

  • Jung, Sung-Ki;Joo, Kil Hong
    • 한국정보교육학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.123-126
    • /
    • 2009
  • 오늘날 학생들의 성적을 고려하는 중요한 요소로 사회적인 특성과 환경적인 특성이 매우 중요시 되고 있다. 이는 대인관계, 사회적인 관계, 학교에서의 관계 등이 중요한 요소가 되기 때문이다. 이러한 특징을 잘 표현해 주는 것으로 사상체질에 대한 분석이 있다. 우리가 알고 있는 MBTI를 이용한 분석에 대한 연구가 많이 있으나 이는 환경적인 특성과 사회적인 특성을 잘 반영하지 못하고 있다. 따라서 본 논문에서는 사상체질의 특성을 분석하여 세부적인 특징을 추출한 후 잘 알려진 MBTI의 요소와의 관계를 분석한다. 이를 통해 사상체질 분석을 통하여 추출된 내용을 MBTI의 연구된 내용에 접목시켜 학생의 학습방법을 지도할 수 있는 방안을 모색하도록 한다. 또한 사회적, 환경적 특성을 고려한 학습방법을 제시하는데 많은 도움을 줄 수 있다.

  • PDF

Gesture Recognition in Video image with Combination of Partial and Global Information (로컬 모션정보와 글로벌 모션정보를 조합한 제스쳐 인식)

  • 오재용;이칠우
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.279-283
    • /
    • 2004
  • 본 논문에서는 일반적인 비디오 스트림에서 자동으로 인간의 제스처를 인식하는 알고리즘에 대하여 기술한다. 본 알고리즘은 입력된 비디오 영상으로부터 추출된 신체영역의 2차원적 특징 벡터를 사용하며, 주성분 분석법(Principle Component Analysis)을 통하여 모델 제스처 공간(Model Gesture space)을 구성함으로서 제스처를 통계학적으로 분석/표현하며, 이 제스처 공간에서 새로 입력되는 영상을 같은 방법으로 투영시키고, HMM(Hidden Markov Model) 이론을 적용하여 심볼화함으로써 최종적으로 제스처를 인식하게 된다. 본 방법은 기존의 제스처 인식 방법들과는 달리 전체적인 영상 정보(Global Information)와 세부적인 영상 정보(Partial Information)를 조합하여 사용한다는데 특징이 있으며, 본 알고리즘을 통해 보다 정확하게 강건한 제스처 인식 기술을 실생활에 적용할 수 있을 것이다.

  • PDF

A Method for Intention Inference from Visual Information (시각 정보에 의한 의도 추론 기법)

  • Park, Jin-Hui;Lee, J.S.;Kim, Ho-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.44-47
    • /
    • 2008
  • 본 논문에서는 유비쿼터스 환경에서 인간의 행동패턴을 인식하고 이 결과를 활용하여 사용자의 의도를 추론하는 방법론에 관해 기술한다. 인간행동의 예측에 관한 지식표현으로부터의 추론기능과 예제패턴 기반의 학습기능을 동시에 지원하는 모델을 제시하고 이론의 타당성과 유용성을 고찰한다. 의도 추론 문제에서 지식기반 기법이 갖는 불완전성을 극복하기 위하여 예제기반 학습능력의 필요성을 도출하는 한편, 다양한 변이가 존재하는 응용에서 학습데이터 선정의 어려움을 보완하기 위한 방법론을 제시한다. 세부적으로 인간행동에 관한 특징표현과 행동패턴 클래스를 정의하고 이들간의 관계를 고유한 지식표현 규칙으로 정형화 한다. 또한 제안된 지식표현을 수용하는 추론 메커니즘을 제시하며, 제시한 모델의 부수적 특징으로 학습과정을 통한 지식 정련기능의 유용성을 고찰한다.

An Analysis of the Vector and Inner Product Concepts in Geometry and Vector Curriculum ('기하와 벡터' 교육과정의 벡터와 내적 개념 분석)

  • Shin, BoMi
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.4
    • /
    • pp.841-862
    • /
    • 2013
  • This study analyzed issues in the mathematics curriculum concerning the cognitive development of the vector and inner product concepts in the light of Tall's and Watson's research(Tall, 2004a; Tall, 2004b; Watson et al., 2003; Watson, 2002). Some suggestions in teaching the vector and inner product concepts were elaborated in the terms of these analyses. First, the position vector needs to be represented by an arrow on the coordinate system in order to introduce the component form of a vector represented by a directed line segment. Second, proofs of the vector operation law should be carried out by symbolic manipulations based on the algebraic concept of a vector in the symbolic world. Third, it is appropriate that the inner product is defined as $\vec{a}{\cdot}\vec{b}=a_1b_1+a_2b_2$ (when, $\vec{a}=(a_1,a_2)$, $\vec{b}=(b_1,b_2)$) when it comes to considering the meaning of the inner product relevant to vector space in the formal world. Cognitive growth of concepts of the vector and inner product can be properly induced through revising explanation methods about the concepts in the curriculum in the basis of the above suggestions.

  • PDF

Efficient water resource management using cluster and trend analysis for each rainfall station (강우 관측소별 군집 및 경향성 분석을 활용한 효율적인 수자원 관리)

  • Won-joon Wang;Seong Cheol Shin;Yu Jin Kang;Seungmin Lee;Soojun Kim;Hung Soo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.115-115
    • /
    • 2023
  • 최근 기후변화의 영향으로 국내에서 강우량과 유출량의 변동성이 커짐에 따라 효율적으로 수자원을 관리하는 데 어려움을 겪고 있다. 따라서 수자원 관리 측면에서 강우관측소를 대상으로 군집 분석과 경향성 분석을 통해 사전에 강우 시계열 자료의 추세와 특징을 파악하면 용수 공급과 가뭄 및 홍수피해 저감 등에 효과적으로 대처할 수 있다. 본 연구에서는 2000년부터 2019년까지낙동강 유역의 64개 강우관측소를 대상으로 동질성 검정과 수정 Mann-Kendall (MK) 검정을 적용하여 강우 시계열 자료의 월별, 계절별, 연도별 경향성 분석을 수행하였다. 또한, 경향성이 나타나는 관측소별 세부지표(연평균 강우량, 표고 등)를 기준으로 K-means 군집 분석을 수행하여 군집별 강우 특성을 파악하고자 하였다. 분석을 수행한 결과 경향성 분석에선 3월, 4월, 11월, 12월, 봄 및 가을에는 강우량이 증가 추세를 보였고 1월, 5~9월, 여름과 연도별로는 감소 추세가 나타났다. 또한 군집 분석에서는 Silhouette analysis를 기반으로 최적의 군집 개수를 3개로 설정했을 때 군집별 강우 세부지표의 통계값이 관측소별 표고에 비례하는 특징이 나타났다. 연구를 통해 도출된 군집별 강우 특성과 관측소별 경향성 분석결과를 연계하면 강우량의 변동성을 고려한 효율적인 수자원 관리 방안을 마련하는 데 활용할 수 있을 것으로 판단된다.

  • PDF

Single Image Super Resolution Method based on Texture Contrast Weighting (질감 대조 가중치를 이용한 단일 영상의 초해상도 기법)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2024
  • In this paper, proposes a super resolution method that enhances the quality of results by refining texture features, contrasting each, and utilizing the results as weights. For the improvement of quality, a precise and clear restoration result in details such as boundary areas is crucial in super resolution, along with minimizing unnecessary artifacts like noise. The proposed method constructs a residual block structure with multiple paths and skip-connections for feature estimation in conventional Convolutional Neural Network (CNN)-based super resolution methods to enhance quality. Additional learning is performed for sharpened and blurred image results for further texture analysis. By contrasting each super resolution result and allocating weights through this process, the proposed method achieves improved quality in detailed and smoothed areas of the image. The experimental results of the proposed method, evaluated using the PSNR and SSIM values as quality metrics, show higher results compared to existing algorithms, confirming the enhancement in quality.

A Weighted FMM Neural Network and Feature Analysis Technique for Pattern Classification (가중치를 갖는 FMM신경망과 패턴분류를 위한 특징분석 기법)

  • Kim Ho-Joon;Yang Hyun-Seung
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • In this paper we propose a modified fuzzy min-max neural network model for pattern classification and discuss the usefulness of the model. We define a new hypercube membership function which has a weight factor to each of the feature within a hyperbox. The weight factor makes it possible to consider the degree of relevance of each feature to a class during the classification process. Based on the proposed model, a knowledge extraction method is presented. In this method, a list of relevant features for a given class is extracted from the trained network using the hyperbox membership functions and connection weights. Ft)r this purpose we define a Relevance Factor that represents a degree of relevance of a feature to the given class and a similarity measure between fuzzy membership functions of the hyperboxes. Experimental results for the proposed methods and discussions are presented for the evaluation of the effectiveness and feasibility of the proposed methods.

Computing of the Fuzzy Membership Function for Karyotype Classification (핵형 분류를 위한 퍼지 멤버쉽 함수의 처리)

  • Eom, Sang-Hee;Nam, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.1-8
    • /
    • 2006
  • Many researchers have been studied for the automatic chromosome karyotype classification and analysis. For the automatic classify the each chromosome which is the image in microscope, it is necessary to process the sub-procedure, ie. image pre-processing, implementing karyotype classifier. The image pre-processing proceeded the each chromosome separation, the noise exception and the feature parameter extraction. The extracted morphological feature parameter were the centromeric index(C.I.), the relative length ratio(R.L.), and the relative area ratio(R.A.). In this paper, the fuzzy classifier was implemented for the human chromosome karyotype classification. The extracted morphological feature parameter were used in the input parameter of fuzzy classifier. We studied about the selection of the membership function for the optimal fuzzy classifier in each chromosome groups.

  • PDF