• Title/Summary/Keyword: 세라믹-세라믹 관절면

Search Result 4, Processing Time 0.01 seconds

Cementless Total Hip Arthroplasty Using Ceramic Femoral Head on Cross-Linked Ultra-High-Molecular Weight Polyethylene Liner in Patients Older than 65 Years: Minimum Five-Year Follow-Up Results (세라믹 대퇴 골두 및 교차결합 초고분자량 폴리에틸렌 라이너를 이용한 65세 이상 무시멘트형 인공 고관절 전치환술: 최소 5년 중기 추시 결과)

  • Yun, Ho Hyun;Cheong, Ji Young;Sim, Hyun Bo;Park, Jae Hong
    • Journal of the Korean Orthopaedic Association
    • /
    • v.53 no.6
    • /
    • pp.490-497
    • /
    • 2018
  • Purpose: To evaluate the utility of ceramic-on-polyethylene articular bearing surface when cementless total hip arthroplasty is performed in patients older than 65 years through an analysis of the minimum five-year follow-up results using the ceramic femoral head and cross-linked polyethylene liner. Materials and Methods: From March 2010 to September 2012, 51 patients (56 hips) who were older than 65 years were enrolled in this retrospective study. The mean age at surgery was $70.9{\pm}5.1years$ old. A clinical assessment was analyzed using the Harris hip score. For the radiographic assessment, the cup inclination and anteversion, stem alignment, and wear amount were measured. The postoperative complications were also determined. Results: The mean Harris hip score was improved from preoperative 48 points to postoperative 87 points (p<0.05). The mean cup inclination was $40.9^{\circ}{\pm}6.4^{\circ}$ and the mean cup anteversion was $20.3^{\circ}{\pm}8.1^{\circ}$. The mean cup anteversion of the elevated liner-used group (16 cases) was $14.3^{\circ}{\pm}7.9^{\circ}$ and the mean cup anteversion of the neutral liner used group (40 cases) was $22.4^{\circ}{\pm}9.1^{\circ}$ (p<0.05). The mean stem alignment angle was $0^{\circ}$ (range, varus $4^{\circ}$-valgus $4^{\circ}$). The mean linear wear amount was $0.458{\pm}0.041mm$ and the average annual linear wear rate was $0.079{\pm}0.032mm/yr$. Six cases (10.7%) of intraoperative periprosthetic femoral fractures were encountered. Conclusion: Based on these results, the use of a ceramic-on-polyethylene articular bearing surface in elderly patients with cementless total hip arthroplasty is beneficial. On the other hand, careful effort is needed to prevent intraoperative periprosthetic femoral fractures.

Literature review on fractography of dental ceramics (치과용 세라믹의 파단면분석(fractography)에 대한 문헌고찰)

  • Song, Min-Gyu;Cha, Min-Sang;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.3
    • /
    • pp.138-149
    • /
    • 2022
  • The clinical applicability of ceramics can be increased by analyzing the causes of fractures after fracture testing of dental ceramics. Fractography to analyze the cause of fracture of dental ceramics is being widely applied with the development of imaging technologies such as scanning electron microscopy. Setting the experimental conditions is important for accurate interpretation. The fractured specimens should be stored and cleaned to avoid contamination, and metal pretreatment is required for better observation. Depending on the type of fracture, there are dimple rupture, cleavage, and decohesive rupture mainly observed in metals, and fatigue fractures and conchoidal fractures observed in ceramics. In order to reproduce fatigue fracture in the laboratory, which is the main cause of fracture of ceramics, a dynamic loading for observing slow crack growth is essential, and the load conditions and number of loads must be appropriately set. A typical characteristic of a fracture surface of ceramic is a hackle, and the causes of fracture vary depending on the shape of hackle. Fractography is a useful method for in-depth understanding of fractures of dental ceramics, so it is necessary to follow the exact experimental procedure and interpret the results with caution.

Osseointegration of Ceramics & Zirconia : A Review of Literature (세라믹과 지르코니아의 골유착에 관한 고찰)

  • Song, Young-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.3
    • /
    • pp.319-326
    • /
    • 2012
  • For many years, ceramics have been used in fixed prosthodontics for achieving optimal esthetics. but, they have another use as well. Many studies today show ceramics can be used for biomaterials. In the beginning researchers made a start in the study of aluminium oxide and sapphire for biomaterial. The appearance of Zirconia began a new phase of research. Zirconia was introduced into implantology as an alternative to titanium, because of its white color, good mechanical properties and superior biocompatibility. But it is not easy to surface treatment in comparison with titanium. To overcome the limitation, interconnected porous bodies of zirconia were fabricated by sintering technique. And the technique of coating was developed. Therefore, some zirconia implants are currently available. It is thought that Research of biomaterials as a variety of puposes for the use of zirconia is looking very promising. The purpose of this paper reviews are to evaluation of zirconia as biomaterials.

Three-Dimensional Finite Element Analysis for Comparison between Titanium Implant Abutment and Zirconia Implant Abutment (지르코니아 임플란트 지대주와 티타늄 임플란트 지대주의 삼차원적 유한요소응력분석)

  • Yun, Mi-Jung;Kim, Chang-Weop;Jeong, Chan-Mo;Seo, Seung-U
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.1
    • /
    • pp.51-61
    • /
    • 2011
  • Recently, restoring implants in the esthetically demanding region, zirconia-based materials are widely used due to their superior mechanical properties, accuracies, and esthetics. The purpose of this study was to investigate the load transfer and mechanical stability of zirconia and titanium implant abutments by using the three-dimensional finite element analysis model. The internal conical joint type and external butt joint type implant system was selected as an experimental model. Finite element models of bone/implant/prosthesis complex were constructed. An load of 250N was applied vertically beside 3mm of implant axis. Stress distribution of zirconia and titanium implant abutment is similar. The maximum equivalent stress of titanium implant abutment is lower than zirconia implant abutment about 15%. Howevere considering a high mechanical strength that exceed those of titanium implant abutment, zirconia implant abutment had similar mechanical stability of titanium implant abutment clinically.