DOI QR코드

DOI QR Code

Literature review on fractography of dental ceramics

치과용 세라믹의 파단면분석(fractography)에 대한 문헌고찰

  • Song, Min-Gyu (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Cha, Min-Sang (Department of Dentistry, Gangneung Asan Hospital, University of Ulsan College of Medicine) ;
  • Ko, Kyung-Ho (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Huh, Yoon-Hyuk (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Park, Chan-Jin (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Cho, Lee-Ra (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University)
  • 송민규 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 차민상 (울산대학교 의과대학 강릉아산병원 치과) ;
  • 고경호 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 허윤혁 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 박찬진 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 조리라 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소)
  • Received : 2022.08.17
  • Accepted : 2022.09.01
  • Published : 2022.09.30

Abstract

The clinical applicability of ceramics can be increased by analyzing the causes of fractures after fracture testing of dental ceramics. Fractography to analyze the cause of fracture of dental ceramics is being widely applied with the development of imaging technologies such as scanning electron microscopy. Setting the experimental conditions is important for accurate interpretation. The fractured specimens should be stored and cleaned to avoid contamination, and metal pretreatment is required for better observation. Depending on the type of fracture, there are dimple rupture, cleavage, and decohesive rupture mainly observed in metals, and fatigue fractures and conchoidal fractures observed in ceramics. In order to reproduce fatigue fracture in the laboratory, which is the main cause of fracture of ceramics, a dynamic loading for observing slow crack growth is essential, and the load conditions and number of loads must be appropriately set. A typical characteristic of a fracture surface of ceramic is a hackle, and the causes of fracture vary depending on the shape of hackle. Fractography is a useful method for in-depth understanding of fractures of dental ceramics, so it is necessary to follow the exact experimental procedure and interpret the results with caution.

치과용 세라믹의 파절실험 후 파절이 발생한 원인을 분석하면 세라믹의 임상적용 가능성을 높일 수 있다. 파절원인을 파악하기 위한 파단면분석은 주사전자현미경 등 영상기술의 발달로 점차 널리 적용되고 있는데 이를 정확히 해석하기 위해서는 실험조건 설정이 중요하다. 파절시편이 오염되지 않도록 보관하고 세척하며, 관찰을 위해 금속 전처리가 필요하다. 파절은 양상에 따라 주로 금속에서 관찰되는 보조개모양 파절, 열개, 분리파손 및 세라믹에서 관찰되는 피로파절과 조가비 모양 파절이 있다. 세라믹의 주된 파절원인인 피로파절을 실험실에서 재현하기 위해 느린 균열성장을 관찰할 수 있는 동적 하중이 필수적이며 하중조건과 하중횟수 등을 적절히 설정해야 한다. 세라믹의 파단면에서 나타나는 대표적인 특징은 해클이며 다양한 해클의 형태를 잘 관찰하여 세라믹 파절의 원인과 과정을 분석할 수 있도록 하는 것이 필요하다. 파단면분석은 치과용 세라믹의 파절을 심층적으로 파악할 수 있는 유용한 방법이므로 정확한 실험과정을 따르고 결과해석에 유의해야 한다.

Keywords

References

  1. Lawson NC, Burgess JO. Dental ceramics: a current review. Compend Contin Educ Dent 2014;35:161-6.
  2. Lynch SP, Moutsos S. A brief history of fractography. J Fail Anal Prev 2006;6:54-69. https://doi.org/10.1361/154770206X156231
  3. Kemmenoe BH, Bullock GR. Structure analysis of sputter coated and ion beam sputter coated films: a comparative study. J Microsc 1983;132:153-63. https://doi.org/10.1111/j.1365-2818.1983.tb04267.x
  4. Mills K, Davis JR, Destefani JD, Dieterich DA. ASM Handbook. Vol. 12. Fractography. 1998. Available from: https://docero.tips/doc/asm-handbookvolume-12-fractography-1998s-16d34vnnvl (updated 2022 Sep 1).
  5. Hein LR, Campos KA, Caltabiano PC, Kostov KG. A brief discussion about image quality and SEM methods for quantitative fractography of polymer composites. Scanning 2013;35:196-204. https://doi.org/10.1002/sca.21048
  6. Scherrer SS, Quinn JB, Quinn GD, Wiskott HW. Fractographic ceramic failure analysis using the replica technique. Dent Mater 2007;23:1397-404. https://doi.org/10.1016/j.dental.2006.12.002
  7. Yamini S, Young R. Crack propagation in and fractography of epoxy resins. J Mater Sci 1979;14:1609-14. https://doi.org/10.1007/BF00569280
  8. Echlin P. Handbook of sample preparation for scanning electron microscopy and X-ray microanalysis. 1st ed. New York; Springer Science & Business Media; 2011.
  9. Young R, Buxbaum A, Peterson B, Schampers R. In-situ sample preparation and modeling of SEMSTEM imaging. Microsc Microanal 2008;14:1000-1. https://doi.org/10.1017/s1431927608081713
  10. Scherrer SS, Quinn JB, Quinn GD, Kelly JR. Failure analysis of ceramic clinical cases using qualitative fractography. Int J Prosthodont 2006;19:185-92.
  11. Mecholsky JJ Jr. Fractography: Determining the sites of fracture initiation. Dent Mater 1995;11:113-6. https://doi.org/10.1016/0109-5641(95)80045-X
  12. Sujata M, Jagannathan N, Raghavendra K, Manjunatha CM, Bhaumik SK. Fatigue fracture of a compressor disc of an aerogenine. J Fail Anal Preven 2013;13:437-44. https://doi.org/10.1007/s11668-013-9688-z
  13. Hasnaoui A, Van Swygenhoven H, Derlet PM. Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation. Science 2003;300:1550-2. https://doi.org/10.1126/science.1084284
  14. Liu P, Li Y, Geng H, Wang J. Microstructure characteristics in TIG welded joint of Mg/Al dissimilar materials. Mater Lett 2007;61:1288-91. https://doi.org/10.1016/j.matlet.2006.07.010
  15. De Saude J, Sun SD, Sharp P, Luzin V, Klein A, Wang C, Brandt M. Fatigue and fracture behavior of laser clad repair of AerMet® 100 ultra-high strength steel. Int J Fatig 2016;85:18-30. https://doi.org/10.1016/j.ijfatigue.2015.11.021
  16. Salazar Marocho SM, Studart AR, Bottino MA, Della Bona A. Mechanical strength and subcritical crack growth under wet cyclic loading of glass-infiltrated dental ceramics. Dent Mater 2010;26:483-90. https://doi.org/10.1016/j.dental.2010.01.007
  17. Kelly JR, Cesar PF, Scherrer SS, Della Bona A, van Noort R, Tholey M, Vichi A, Lohbauer U. ADM guidance-ceramics: Fatigue principles and testing. Dent Mater 2017;33:1192-204. https://doi.org/10.1016/j.dental.2017.09.006
  18. Taskonak B, Griggs JA, Mecholsky JJ Jr, Yan JH. Analysis of subcritical crack growth in dental ceramics using fracture mechanics and fractography. Dent Mater 2008;24:700-7. https://doi.org/10.1016/j.dental.2007.08.001
  19. Kirsten A, Begand S, Oberbach T, Telle R, Fischer H. Subcritical crack growth behavior of dispersion oxide ceramics. J Biomed Mater Res B Appl Biomater. 2010;95:202-6.
  20. Song XF, Yin L, Peng JH, Lin B. Cutting characteristics of dental glass ceramics during in vitro dental abrasive adjusting using a high-speed electric handpiece. Ceram Int 2013;39:6237-49. https://doi.org/10.1016/j.ceramint.2013.01.045
  21. Song XF, Ma HR, He YP, Yin L. Soft machininginduced surface and edge chipping damage in precrystalized lithium silicate glass ceramics. J Mech Behav Biomed Mater 2022;131:105224. https://doi.org/10.1016/j.jmbbm.2022.105224
  22. Teixeira EC, Piascik JR, Stoner BR, Thompson JY. Dynamic fatigue and strength characterization of three ceramic materials. J Mater Sci Mater Med 2007;18:1219-24. https://doi.org/10.1007/s10856-007-0131-4
  23. Gonzaga CC, Cesar PF, Miranda WG Jr, Yosimura HN. Slow crack growth and reliability of dental ceramics. Dent Mater 2011;27:394-406. https://doi.org/10.1016/j.dental.2010.10.025
  24. Lee YJ, Huh YH, Ko KH, Park CJ, Cho LR. Evaluation of various polishing systems for lithium disilicate glass-ceramics. Eur J Prosthodont Restor Dent 2022;30:188-99.
  25. Bravo-Leon A, Jimenez-Melendo M, DominguezRodriguez A. Mechanical and microstructural aspects of the high temperature plastic deformation of yttria-stabilized zirconia polycrystals. Acta Metal Mater 1992;40:2717-26. https://doi.org/10.1016/0956-7151(92)90342-C
  26. Eichle J, R odel J, Eisele U, Hoffman M. Effect of grain size on mechanical properties of submicrometer 3Y-TZP: fracture strength and hydrothermal degradation. J Am Ceram Soc 2007;90:2830-6. https://doi.org/10.1111/j.1551-2916.2007.01643.x
  27. Smith TB, Kelly JR, Tesk JA. In vitro fracture behavior of ceramic and metal-ceramic restorations. J Prosthodont 1994;3:138-44. https://doi.org/10.1111/j.1532-849x.1994.tb00144.x
  28. Marx R, Jungwirth F, Walter PO. Threshold intensity factors as lower boundaries for crack propagation in ceramics. Biomed Eng Online 2004;3:41. https://doi.org/10.1186/1475-925X-3-41
  29. Quinn GD. Fractography of ceramics and glasses. 3rd ed. Washington; National Institute of Standards and Technology; 2007. p. 233-5.
  30. Cesar PF, Della Bona A, Scherrer SS, Tholey M, van Noort R, Vichi A, Kelly R, Lohbauer U. ADM guidance-Ceramics: Fracture toughness testing and method selection. Dent Mater 2017;33:575-84. https://doi.org/10.1016/j.dental.2017.03.006
  31. Scherrer SS, Cattani-Lorente M, Vittecoq E, de Mestral F, Griggs JA, Wiskott HW. Fatigue behavior in water of Y-TZP zirconia ceramics after abrasion with 30 μm silica-coated alumina particles. Dent Mater 2011;27:e28-42.
  32. Quinn GD, Eichler J, Eisele U, Rodel J. Fracture mirrors in nanoscale 3Y TZP. J Am Ceram Soc 2004;87:513-6. https://doi.org/10.1111/j.1551-2916.2004.00513.x
  33. Preis V, Behr M, Hahnel S, Handel G, Rosentritt M. In vitro failure and fracture resistance of veneered and full-contour zirconia restorations. J Dent 2012;40:921-8. https://doi.org/10.1016/j.jdent.2012.07.010
  34. Quinn GD. Fractography of ceramics and glasses. 3rd ed. Washington; National Institute of Standards and Technology; 2020. p. 108-256.
  35. Quinn JB, Quinn GD, Kelly JR, Scherrer SS. Fractographic analyses of three ceramic whole crown restoration failures. Dent Mater 2005;21:920-9. https://doi.org/10.1016/j.dental.2005.01.006
  36. Scherrer SS, Quinn JB, Quinn GD, Kelly JR. Failure analysis of ceramic clinical cases using qualitative fractography. Int J Prosthodont 2006;19:185-92.
  37. Scherrer SS, Lohbauer U, Della Bona A, Vichi A, Tholey MJ, Kelly JR, van Noort R, Cesar PF. ADM guidance-Ceramics: Guidance to the use of fractography in failure analysis of brittle materials. Dent Mater 2017;33:599-620. https://doi.org/10.1016/j.dental.2017.03.004