• Title/Summary/Keyword: 세라믹 멤브레인

Search Result 89, Processing Time 0.023 seconds

Fabrication and Characterization of Alumina Hollow Fiber Ultrafiltration Membrane (알루미나 중공사 한외여과막 제조 및 특성평가)

  • Kim, Yeo-Jin;Kim, Seong-Joong;Kim, Jeong;Cho, Young-Hoon;Park, Hosik;Lee, Pyung-Soo;Park, You-In;Park, Ho-Bum;Nam, Seung-Eun
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.21-30
    • /
    • 2018
  • In this study, homogeneous and defect-free ceramic ultrafiltration membranes were fabricated by using the sol-gel method. A boehmite sol was synthesized and coated onto the surface of alumina hollow fiber microfiltration membranes. The effect of sol viscosity and surface tension on the coating layer homogeneity and thickness was investigated. The optimum coating repetition using pristine sol was determined to be 3 times, as the samples coated more than 4 times showed delamination. Fixing the coating repetition to 3 times, the effect of sintering temperature was also studied in this work. The samples sintered at $1000^{\circ}C$ exhibited the highest pure water permeability with the molecular weight cut-off (MWCO) of approximately 51 kDa (10 nm dextran), and the samples sintered at 600, $800^{\circ}C$ displayed the MWCO of 12 kDa (5 nm dextran). The ultrafiltration membranes prepared in this work showed competitive performance compared to the reported ceramic ultrafiltration membranes.

Oxidation of Organic Compounds through the Electrochemical Reaction Using $TiO_{2}$ Photocatalytic Membranes ($TiO_{2}$ 광촉매 막의 전기화학 반응에 의한 유기물의 산화)

  • 현상훈;이기홍
    • Membrane Journal
    • /
    • v.6 no.2
    • /
    • pp.101-108
    • /
    • 1996
  • The oxidation/degradation efficiency of formic acid through the photoelectrochemical reaction has been investigated as a basic research in order to develope the process for degrading toxic organic compounds dissolved in water. A $TiO_{2}$ photoelectro-membrane reactor for purification of water, in which filtration as well as photoelectrocatalytic oxidation of organic compounds could be carried out simultaneously, was developed. Porous $SnO_{2}$ tubes prepared by slip casting and commercial porous stainless steel tubes, being electrically conductive, were used as not only supports but also working electrodes. The UV light with the wavelength of 365 nm was applied as a light source for photocatalytic reactions. The photoelectrocatatytic composite membranes were prepared by coating the support surface with the $TiO_{2}$ sol of pH 1.45. The oxidation efficiency of formic acid increased with the reaction time and the applied voltage, but was almost independent of the solution flux. The results showed that more than 90% of formic acid could he dograded at 27V using the $TiO_{2}$/stainless steel composite membrane, while about 77% in case of the $TiO_{2}/SnO_{2}$ Composite membrane. It was also concluded that the oxidation efficiencies of formic acid could be significantly improved by about 6~7 times by the photoelectrochemical reaction in comparison with those by the photocatalytic reaction only.

  • PDF

Hybrid Water Treatment of Photocatalyst Coated Polypropylene Beads and Ceramic Membranes: Effect of Membrane and Water Back-flushing Period (광촉매 코팅 폴리프로필렌 구와 세라믹 분리막의 혼성수처리: 분리막과 물 역세척 주기의 영향)

  • Park, Jin Yong;Hwang, Jung Hye
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.211-219
    • /
    • 2013
  • Effect of water back-flushing period (FT) was investigated in hybrid water treatment process of carbon ultrafiltration and polypropylene (PP) beads coated with photocatalyst, and membrane effect was studied by comparing the previous studies with carbon microfiltration or alumina ultrafiltration, microfiltration membranes. FT 6 min was the most effective to control initial membrane fouling and optimal condition because the membrane fouling resistance was low until initial 60 min and the maximum total permeate volume was acquired at this FT. The turbidity treatment efficiency was high beyond 98.6%, and did not depend on FT, which was same with the previous result of carbon or alumina microfiltration. The organic matters treatment efficiency was the highest value of 98.2% at FT 6 min, which was almost same trend with the previous result of alumina microfiltration. Then the organic matters treatment efficiency of carbon microfiltration was the minimum at no back-flushing (NBF) and increased as decreasing FT, but that of alumina ultrafiltration was the maximum at NBF and also increased as decreasing FT. Therefore it means that water back-flushing effect on the organic matters treatment efficiency had a different mechanism depending on pore size in spite of the same material membranes.

Development of Ceramic Membrane for Metal Ion Separation of Lignin Extract from Pulp Process (펄프공정으로부터 배출되는 리그닌 추출물의 금속이온 분리를 위한 세라믹 분리막 개발)

  • Shin, Min Chang;Choi, Young Chan;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.199-204
    • /
    • 2017
  • In this study, a study was carried out for the separation of metal ions in lignin extract discharged from the pulp process. alumina powders were mixed with DMAc (N, N-dimethylacetamide) solvent and PESf (Polyethersulfone) polymer, PVP (polyvinylpyrrolidone) dispersant was added and slip casting method was used to prepare the membrane. The membrane was measured for pore size through a CFP (Capillary Flow Porometer) device and the surface and cross-section of the membrane were observed through a FE-SEM (Field Emission Scanning Electron Microscope). The flux was calculated by measuring the filtered weight per hour using a separation experiment device. Pore size measurements were performed under increasing pressure from 0 psi to 30 psi. The pore size of the membrane was $0.4{\mu}m$ and the flux decreased from the initial flux value of $6.36kg{\cdot}m^{-2}{\cdot}h^{-1}$ to $1.98kg{\cdot}m^{-2}{\cdot}h^{-1}$ due to the fouling of the membrane. After the permeation experiment, membrane contaminants were removed by simple washing. Separation experiments showed that Na contained in the initial lignin extract was reduced by 69%, Fe was removed by 87%, K by 95%, Ca by 93% and Mg by 96%.

Analysis of EDCs by Mass Spectrometry and their Removal by Membrane Filtrations (질량분석법에 의한 내분비계 장애물질의 분석과 막 여과에 의한 제거)

  • Kim Tae-Uk;Yeon Kyeong-Ho;Cho Jaeweon;Moon Seung-Hyeon
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.297-309
    • /
    • 2005
  • As a number of potential endocrine disrupting compounds (EDCs) are released into the environment, recently growing attention has been drawn to them. Therefore sensitive and reliable analytical methods are essential to monitor those compounds. In this study, complementary CC-MS and LC-MS were employed to analyze the endocrine disrupters, and the results of two methods were compared for di(2-ethylhexyl)phthalate (DEHP), benzylbutylphthalate (BBP), pentachlorophenol (PCP), and 4,4'-Isopropylidenediphenol (Bisphenol-A, or BPA). The results indicate that it was possible to lower the detection limits of EDCs by LC-MS. Also, LC-MS enabled to identify the EDCs as almost intact molecules. Furthermore, this study presented a nanofiltration membrane (MWCO 250) and a ultrafiltration membrane (MWCO 1,000) filtration system as methods far removing EDCs from drinking water containing $\gamma$-BHC, p,p'-DDE, BBP, p,p'-DDT, DEHP, PCP, and BPA. Cross-flow type nanofiltrations showed $100\%$ removal of EDCs, and the result implies that MWCO 250 nanofilter was sufficient for treatment of EDCs. The ratio of permeate flux to mass transfer coefficient of nanofiltration, high flux ultrafiltration, and low flux ultrafiltration with ultrapure water were 0.67, 3.4, and 0.44, respectively. It was found that nanofiltration and low flux ultrafiltration were operated at a diffusion dominant condition, and the high flux ultrafiltration was operated at a convection dominant condition. Furthermore, a diffusion dominant process attained reasonable rejection of EDCs. The removal in the ultrafiltration was depending on the molecular weight of an EDC, and the filtration was governed by diffusion-dominant hydrodynamic conditions.

Current Status and Future Research Directions of Separator Membranes for Lithium-Ion Rechargeable Batteries (리튬이차전지용 분리막 이해 및 최신 연구 동향)

  • Kim, Jung-Hwan;Lee, Sang-Young
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.337-350
    • /
    • 2016
  • Lithium-ion rechargeable batteries (LIBs) have garnered increasing attention with the rapid advancements in portable electronics, electric vehicles, and grid-scale energy storage systems which are expected to drastically change our future lives. This review describes a separator membrane, one of the key components in LIBs, in terms of porous structure and physicochemical properties, and its recent development trends are followed. The separator membrane is a kind of porous membrane that is positioned between a cathode and an anode. Its major functions involve electrical isolation between the electrodes while serving as an ionic transport channel that is filled with liquid electrolyte. The separator membranes are not directly involved in redox reactions of LIBs, however, their aforementioned roles significantly affect performance and safety of LIBs. A variety of research approaches have been recently conducted in separator membranes in order to further reinforce battery safeties and also widen chemical functionalities. This review starts with introduction to commercial polyolefin separators that are currently most widely used in LIBs. Based on this understanding, modified polyolefin separators, nonwoven separators, ceramic composite separators, and chemically active separators will be described, with special attention to their relationship with future research directions of advanced LIBs.

Preparation of Pd/Al2O3, Pd/Ag/Al2O3 Membranes and Evaluation of Hydrogen Permeation Performance (Pd/Al2O3, Pd/Ag/Al2O3 분리막의 제조와 수소 투과 성능 평가)

  • Lee, Jeong In;Shin, Min Chang;Zhuang, Xuelong;Hwang, Jae Yeon;Kim, Eok yong;Jeong, Chang-Hun;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.116-125
    • /
    • 2022
  • In this experiment, an α-Al2O3 ceramic hollow fiber was used as a support, and a hydrogen membrane plated with Pd and Pd-Ag was manufactured through electroless plating. The Pd-Ag membrane was annealed at 500℃ for 10 h to form an alloy of Pd and Ag. It was confirmed that it became a Pd-Ag alloy through EDS (Energy Dispersive X-ray Spectroscopy) analysis. Also, the thickness of the Pd, Pd-Ag plating layer was measured to be about 8.98 and 9.29 ㎛ through SEM (Scanning Electron Microscope) analysis respectively. Hydrogen permeation experiment was performed using the H2 gas and mixed gas (H2 and N2) in the range of 350~450℃ and 1-4 bar using the prepared hydrogen membrane. Under the H2 gas condition, the Pd and Pd-Ag membrane has a flux of up to 21.85 and 13.76 mL/cm2·min and also separation factors of 1216 and 361 were obtained in the mixed gas at 450℃ and 4 bar conditions respectively.

Hydrogen Permeation Performance of Pd, Pd/Cu Membranes Manufactured through Electroless Plating (무전해 도금을 이용해 제작한 Pd, Pd/Cu 분리막의 수소 투과 성능)

  • Jeong In, Lee;Min Chang, Shin;Xuelong, Zhuang;Jae Yeon, Hwang;Chang-Hun, Jeong;Jung Hoon, Park
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.456-464
    • /
    • 2022
  • Hydrogen permeation performance was analyzed by manufacturing Pd and Pd-Cu membranes through electroless plating. As a support for the Pd and Pd-Cu membranes, α-Al2O3 ceramic hollow fiber were used. Pd-Cu membrane was manufactured through sequential electroless plating, and then annealing was performed at 500°C, for 18 h in a hydrogen atmosphere to make Pd and Cu alloy. After annealing, the Pd-Cu membrane confirmed that the alloy was formed through EDS (Energy Dispersive X-ray Spectroscopy) and XRD (X-ray Diffraction) analysis. In addition, the thickness of the Pd and Pd-Cu plating layers were measured to be about 3.21 and 3.72 µm, respectively, through SEM (Scanning Electron Microscope) analysis. Hydrogen permeation performance was tested for hydrogen permeation in the range of 350~450°C and 1~4 bar in hydrogen single gas and mixed gas (H2, N2). In a single hydrogen gas, Pd and Pd-Cu membranes have flux of up to 54.42 and 67.17 ml/cm2⋅ min at 450 °C and 4 bar. In the mixed gas, it was confirmed that the separation factors of 1308 and 453 were obtained under the conditions of 450 °C and 4 bar.

Fabrication and Oxygen Permeation Properties of ${La_{1-x}Sr_{x}B_{1-{\gamma}}Fe_{\gamma}O_{3-{\delta}}$(B=Co, Ga) Perovskite-Type Ceramic Membranes (${La_{1-x}Sr_{x}B_{1-{\gamma}}Fe_{\gamma}O_{3-{\delta}}$(B=Co, Ga) 페롭스카이트 세라믹 분리막의 제조 및 산소투과특성)

  • 임경태;조통래;이기성;한인섭;서두원
    • Membrane Journal
    • /
    • v.11 no.4
    • /
    • pp.143-151
    • /
    • 2001
  • We have fabricated mixed-ionic conducting membranes, L $a_{0.6}$S $r_{0.4}$ $Co_{0.2}$F $e_{0.8}$ $O_{3-}$$\delta$/ and L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ by the solid state method. Ceramic membranes consisted of perovskite-type structures and exhibited high relative density, >95%. Especially, dense L $a_{0.6}$S $r_{0.4}$Co $O_{3-}$$\delta$/ layer was coated on the L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membranes by using screen printing technique in order to improve oxygen ion flux. We measured oxygen ion flux on uncoated L $a_{0.6}$S $r_{0.4}$ $Co_{0.2}$F $e_{0.8}$ $O_{3-}$$\delta$/, uncoated L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/, and coated L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membranes. The L $a_{0.6}$S $r_{0.4}$ $Co_{0.2}$F $e_{0.8}$ $O_{3-}$$\delta$/ membranes showed the highest flux, 0.26 mL/min.$\textrm{cm}^2$ at 90$0^{\circ}C$, after steady state had been reached. The oxygen flux of coated L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membranes showed higher value, 0.19 mL/min.$\textrm{cm}^2$ at 95$0^{\circ}C$. This flux was as much as 2 or 3 times higher than those of uncoated L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membranes. 3-$\delta$/ membranes.X> 3-$\delta$/ membranes.membranes.

  • PDF