• Title/Summary/Keyword: 세라믹 멤브레인

Search Result 89, Processing Time 0.038 seconds

Reactive Ceramic Membrane Incorporated with Iron Oxide Nanoparticle for Fouling Control (산화철 나노입자 부착 반응성 세라믹 멤브레인의 막 오염 제어)

  • Park, Hosik;Choi, Heechul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.144-150
    • /
    • 2013
  • Hybrid ceramic membrane (HCM) processes that combined ozonation with a ceramic membrane (CM) or a reactive ceramic membrane (RM), an iron oxide nanoparticles (IONs) incorporated-CM were investigated for membrane fouling control. Alumina disc type microfiltration and ultrafiltration membranes doped with IONs by sintering method were tested under varying mass fraction of IONs. Scanning electron microscope (SEM) images showed that IONs were well-doped on the CM surface and doped IONs were approximately 50 nm in size. Change in the pure water permeability of RM was negligible compared to that of CM. These results indicate that IONs incorporation onto CM had little effect on CM performance in terms of the flux. Natural organic matter (NOM) fouling and fouling recovery patterns during HCM processes confirmed that the RM-ozonation process enhanced the destruction of NOM and reduced the extent of fouling more than the CM-ozonation process by hydroxyl radical formation in the presence of IONs on RM. In addition, analyses of NOM in the feed water and the permeate showed that the efficiency of membrane fouling control results from the NOM degradation during HCM processes; leading to removal and transformation of relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions.

Electrochemical Ceramic Membrane Reactors (이온전도성 세라믹 기반 고온 전기화학 멤브레인 반응기 응용기술)

  • Uhm, Sunghyun;Park, Jae Layng;Seo, Minhye
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.337-343
    • /
    • 2013
  • Membrane reactors have been showing a promising future and attracted increasing attention in the scientific community as they possess advantages in terms of enhanced catalytic activity and selectivity, combination of processes (reaction and separation), simplicity in process design, and safety in operation. In particular, solid electrolyte membrane reactor principles are realized in fuel cells, electrolyzers and reactors for hydrogenation of carbon dioxide and other economically viable reactions. In this review, as a young generation of ion conducting materials, high temperature proton conductors are discussed in terms of the current status of material development and their various applications.

Hydrogen Separation and Production using Proton-Conducting Ceramic Membrane Catalytic Reactors (프로톤 전도성 세라믹 멤브레인 촉매 반응기를 이용한 수소 분리 및 제조 기술)

  • Seo, Minhye;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.596-605
    • /
    • 2019
  • Proton-conducting perovskite ceramic materials are highly promising for solid electrolytes as well as catalysts at high temperatures. Therefore, they possess an outstanding potential for the membrane reactor in which both reaction and separation occur at a same time. Especially, in the case of hydrogen production catalyst, hydrogen separation, and the membrane reactor coupled with catalyst and separation, extensive results have been reported on the effect of the dopant in the solid electrolytes, temperature, and composition of reactants on the performance. In this review, the recent research trend on the application of proton-conducting ceramic materials to hydrogen production catalyst, hydrogen separation, and membrane reactor is surveyed. Moreover, the potential application and prospect of these materials to the next-generation hydrogen production and separation is discussed.

Feasibility of Pyrophyllite Ceramic Membrane for Wastewater Treatment and Membrane Fouling (국내산 납석기반 세라믹 멤브레인 수처리 적용 가능성 평가 및 파울링 현상관찰)

  • Park, Eunyoung;Jang, Hoseok;Choi, Nakcheol;Lee, Sungjae;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.205-211
    • /
    • 2016
  • Performance of pyrophyllite-based ceramic membranes newly developed were investigated. Membrane fouling caused by microbial suspensions taken from a full-scaled MBR system at domestic wastewater treatment plant was observed at different airflow rate and distance between each membrane. For the pyrophyllite support, pore size was about $1.0{\mu}m$, but surface coating with $Al_2O_3$ solution decreased the pore size with the reduction of the pure water permeability. With the MLSS taken from the full-scaled MBR system (6 g/L), the fouling rate was decreased by increasing airflow rate under $20L/m^2{\cdot}hr$ of setpoint flux. However, the effectiveness of the airflow rate on the fouling control depends strongly upon the gap between each membrane. At fixed airflow rate, the fouling rate was decreased by increasing the gap between each pyrophyllite membrane. Nevertheless, further increasing the membrane distance from 3.5 to 5.4 cm resulted in higher fouling rate. Similar result was observed with the $Al_2O_3$ coated-pyrophyllite membrane. Nevertheless, the fouling rate was lower with the coated membrane than that observed with the uncoated pyrophyllite support. Regardless of surface coating, the suspended solids were removed almost completely and the surface coating on the pyrophyllite support improved organic rejection with PEG solution (MW : 8000 kDa) tested.

Development Trend of Membrane Filter Using Ceramic Fibers (세라믹 섬유를 이용한 멤브레인 필터의 연구개발 동향)

  • Kim, Deuk Ju;Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.87-96
    • /
    • 2016
  • Ceramic materials have attracted increasing attention in the last 10 years because of their high thermal stability and high permeation property compared with polymeric nanofiber membranes. Recently, novel nanofiber ceramic membranes with high porosity and flux have been fabricated from metal oxide nanofibers. To improve the performance of ceramic membranes and reduce their costs, a new ceramic membrane with a selective separation layer made of nanofibers was fabricated by electrospinning process and modification process for filtration system. This review summarizes the research trends for the development of ceramic nanofiber membrane over the past few years.

Application of Ceramic Membrane (세라믹 분리막의 응용)

  • 김은옥
    • Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.12-21
    • /
    • 1993
  • 세라믹 분리막은 알루미나($Al_2O_3$), 지르코니아($ZrO_2$), Carbon, 실리콘 카바이드, 스테인레스 등의 무기재료를 이용하여 제조된 분리막이다. 압출성형공정으로 제조된 지지체는 1700$^{\circ}C$ 이상의 소결공정을 거치므로 지지체 상단에 슬러리 코팅공정으로 형성된 얇은 막에게 안정된 분리기능을 수행할 수 있도록 커다란 물리적 강도를 제공한다. 따라서, 세라믹 분리막은 다공성 세라믹 구조를 갖는 특징적인 두 개 또는 세 개의 균일한 층으로 구성된 복합막이라 할 수 있다.

  • PDF

Fabrication of nanoporous ceramic membrane for water treatment (수처리용 나노스케일 다공성 세라믹 멤브레인 제조)

  • Han, Hyuk Su;Lee, Ho Jun;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.77-81
    • /
    • 2019
  • Recently, as the problem of environmental pollution emerges, various methods of eco-friendly water treatment method are being developed. Polymer membranes, which are currently leading the market, are inexpensive, but have many problems in terms of chemical resistance and durability. Thus, ceramic membrane has been attracted great attention as high-efficiency water treatment due to excellent durability and chemical resistant. In this study, ceramic membranes were developed via pore structure, size control, and surface treatment. The pore size of the membrane was controlled through the formation of $ZrO_2$ and $TiO_2$ coating films. Tape casting and sol-gel process were used to form a ceramic coating film with nanopores on the surface of the membrane. Microstructure analysis of ceramic membrane and pore size analysis of the coating film were conducted and the change of water treatment characteristics was observed.

Development of High Temperature $CO_2$ Separation and Utilization Technology by Ceramic Membranes -Recent Research Trends in Japan- (세라믹막을 이용한 이산화탄소 고온분리 및 회수 재이용 기술 개발 -일본의 연구 개발 현황-)

  • 정상진;이용택
    • Membrane Journal
    • /
    • v.8 no.2
    • /
    • pp.59-68
    • /
    • 1998
  • 고정발생원으로 부터 배출되고 있는 이산화탄소를 분리하여 회수 및 재이용하는 기술개발이 에너지 보전 측면에서 뿐만 아니라 환경오염 문제 등을 해결할 수 있는 중요한 과제이다. 특히 내열성, 내식성 및 기계적 강도가 뛰어난 세라믹의 특성을 이용한 기체분리막을 응용한다면 고온으로부터 저온까지의 폭넓은 온도, 압력, 가스조성의 배기가스로부터 이산화탄소를 분리하는 것이 가능해 진다. 따라서 본 총설에서는 현재 일본에서 국책과제로 진행되고 있는 이산화탄소의 고온분리에 대한 연구개발(이하, '$CO_2$ 프로젝트'로 약칭) 현황을 소개하고자 한다.

  • PDF