• Title/Summary/Keyword: 세덤

Search Result 5, Processing Time 0.014 seconds

Roof Greening applied a Sallow Green Roof Module System Out of Management - Focused on the Effects on the Growth of Plants by Difference of Soil Mixture Ratio - (식생모듈박스를 이용한 저토심 무관리형 옥상녹화 - 토양 배합비가 식물생육에 미치는 영향을 중심으로 -)

  • Kang, Tai-Ho;Zhao, Hong-Xia;Li, Hong;Kang, Sung-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.3
    • /
    • pp.91-98
    • /
    • 2012
  • The objective of this study was to analyze the effects on the growth of Sedum species by different soil in shallow green roof module system, and to find the best soil mixture. The experiment used a module system, 7cm soil depth, five types of soil mixture ratio, and it was carried out on 7th Hoar rooftop in December of 2010. The growth status of the plant showed the most superior of the P5C7P2V1, next P10C1P2V1 and P1P1V1, P1 and C1 showed very poor growth. This result showed that the soil mixture ratio (P5C7P2V1) in green roof module system with minimum management can contribute to the proliferation of rooftop greening in urban settings.

Assessment of Roof-rainwater Utilization System and Drought Resistance of Ground Cover Plants (지피식물을 이용한 우수저장형 옥상녹화 시스템 및 식물 내건성 평가)

  • Kang, Tai-Ho;Zhao, Hong-Xia
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • In order to evaluate 2 extensive green roof systems(Sedum Box Roof System and Roof-rainwater Utilization System) for urban greening and select ground-cover plants, which can adapt well to the drought tolerance in an extensive green roof system on 12 species. This study was carried out in order to suggest an experimental base in assessment of the Green Roof-rainwater Utilization System and selecting the drought resistance of plants. Adopting the natural drought method, this paper studies the drought resistance of 12 kinds of ground cover plants. The drought-resistance of ground cover plants subjected to dry processing time were evaluated using relative water content on leaves, relative electric conductivity and chlorophyll content in 12 kinds of plants, and the relation between soil water content under drought stress. Drought resistance of the plants were subject to rooftop drought resistance treatments. The result showed that with the increase of stress time, the relative water content and chlorophyll content on leaves were in a downward trend while the relative electric conductivity was in an upward trend. Among the 12 species of ground cover plants, excluding Pulsatilla koreana, Ainsliaea acerifolia was selected for rooftop plants because they showed resistance to drought strongly and took adaptive ability. These results showed that drought tolerance of plants in Roof-rainwater Utilization System were stronger than the Sedum Box Roof System. Therefore, the Roof-rainwater Utilization System is good for plants. It helps them adapt well to the drought tolerance in rooftops and can be used for urban greening.

Hot Tolerance Assessment of Sedum spp. for Extensive Green Roof System (저관리·경량형 옥상녹화를 위한 세덤류의 내서성 평가)

  • Zhao, Hong-Xia;Son, Hee-Jun;Kang, Tai-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.180-189
    • /
    • 2012
  • This study was carried out to suggest an experiment based for selecting Sedum, which can adapt well with heat tolerance in extensive green roof system. The heat tolerance of Sedum subject to laboratory high temperature treatment and heat processing time were evaluated using electrolyte leakage, chlorophyll content and regrowth test, and the relation between soil water content and heat tolerance were researched. Logistic model of nonlinear regression analysis was used to evaluate the lethal temperatures that were predicted with the range of $45.0{\sim}48.1^{\circ}C$(soil water content 5%), $47.5{\sim}49.3^{\circ}C$(10%), $48.6{\sim}52.8^{\circ}C$(15%) in 6-hours high-temperature treatment. The higher the soil water content, the stronger the heat resistance property of Sedum. there is. The higher the treatment temperature, the lower the chlorophyll content, and the less the soil water content, the faster the chlorophyll decomposition. The order of hot-temperature resistance was S. reflexum>S. takevimense>S. middendorffianum>S. album>S. sieboldii>S. spurium when soil water content was 5%. The order of hot-temperature resistance was S. album>S. reflexum>S. spurium>S. takevimense>S. middendorffianum>S. sieboldii when soil water content was 15%. The more of soil water content, S. album, S. reflexum, S. spurium had stronger tolerant of hot temperature. These results were consistent with those from the regrowth test and the heat tolerance tested by electrolyte leakage evaluation.

Economics and Ground Cover Growth Characteristics of a New Method of Shallow Soil Artificial Foundation Planting (저토심 인공지반 녹화공법의 경제성 및 도입 가능한 지피식물의 생육특성)

  • Choi, Jin-Woo;Kim, Hag-Kee;Lee, Kyong-Jae;Kang, Hyun-Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.5
    • /
    • pp.98-108
    • /
    • 2009
  • The purpose of this study is to analyze the characteristics of limited methods, economics and breeding appropriateness of native and imported ground cover plants in the methodology of a shallow soil rooftop garden. The new shallow soil rooftop gardening method uses a total of 13cm in soil thickness, including 4.5cm of top soil on a 7.5cm rock-wool-mat stacked onto a 1cm roll-type-draining plate. The total construction cost for each method of soil level within the design price standard for SEDUM BLOCK is 89,433won/$m^2$, and for DAKU is 92,550won/$m^2$. By comparing those two methods, the construction cost of the shallow soil artificial foundation methodology is 45,000won/$m^2$; this shows the new method is 50% less expensive than the existing method of shallow soil rooftop gardening. The experiment was executed on the rooftop of the Korean National Housing Corporation to ensure validity of the shallow soil artificial foundation planting, and the sample plants which were imported and grown now in native covering. A list investigating the growing plants was made of the cover rate in each plant class, both while alive and the dry plant weight. The native ground cover plants, Sedum kamtschaticum, Sedum middendorffianum, Allium senescens, Sedum sarmentosum, Aquilegia buergariana, and Caryopteris incana increased the cover rate, live weight and dry weight in the shallow soil artificial foundation method. Among the imported cover plants, Sedum sprium and Sedum reflexum, the cover rate increased and growth conditions improved. However, some species needed weed maintenance. After examination with the less expensive shallow soil artificial foundation method and growth analysis, it was found that rooftop gardens are a low-cost option and the growth of plants is great. This result shows the new method can contribute to the proliferation of rooftop gardens in urban settings.

The Characteristics of Retention and Evapotranspiration in the Extensive Greening Module of Sloped and Flat Rooftops (저토심 경사지붕과 평지붕 녹화모듈의 저류 및 증발산 특성)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.107-116
    • /
    • 2013
  • This study was undertaken to investigate the characteristics of retention and evapotranspiration in the extensive greening module of sloped and flat rooftops for stormwater management and urban heat island mitigation. A series of 100mm depth's weighing lysimeters planted with Sedum kamtschaticum. were constructed on a 50% slope facing four orientations(north, east, south and west) and a flat rooftop. Thereafter the retention and evapotranspiration from the greening module and the surface temperature of nongreening and greening rooftop were recorded beginning in September 2012 for a period of 1 year. The characteristics of retention and evapotranspiration in the greening module were as follows. The water storage of the sloped and flat greening modules increased to 8.7~28.4mm and 10.6~31.8mm after rainfall except in the winter season, in which it decreased to 3.3mm and 3.9mm in the longer dry period. The maximum stormwater retention of the sloped and flat greening modules was 22.2mm and 23.1mm except in the winter season. Fitted stormwater retention function was [Stormwater Retention Ratio(%)=-18.42 ln(Precipitation)+107.9, $R^2$=0.80] for sloped greening modules, and that was [Stormwater Retention Ratio(%)=-22.64 ln(X)+130.8, $R^2$=0.81] for flat greening modules. The daily evapotranspiration(mm/day) from the greening modules after rainfall decreased rapidly with a power function type in summer, and with a log function type in spring and autumn. The daily evapotranspiration(mm/day) from the greening modules after rainfall was greater in summer > spring > autumn > winter by season. This may be due to the differences in water storage, solar radiation and air temperature. The daily evapotranspiration from the greening modules decreased rapidly from 2~7mm/day to less than 1mm/day for 3~5 days after rainfall, and that decreased slowly after 3~5 days. This indicates that Sedum kamtschaticum used water rapidly when it was available and conserved water when it was not. The albedo of the concrete rooftop and greening rooftop was 0.151 and 0.137 in summer, and 0.165 and 0.165 in winter respectively. The albedo of the concrete rooftop and greening rooftop was similar. The effect of the daily mean and highest surface temperature decrease by greening during the summer season showed $1.6{\sim}13.8^{\circ}C$(mean $9.7^{\circ}C$) and $6.2{\sim}17.6^{\circ}C$(mean $11.2^{\circ}C$). The difference of the daily mean and highest surface temperature between the greening rooftop and concrete rooftop during the winter season were small, measuring $-2.4{\sim}1.3^{\circ}C$(mean $-0.4^{\circ}C$) and $-4.2{\sim}2.6^{\circ}C$(mean $0.0^{\circ}C$). The difference in the highest daily surface temperature between the greening rooftop and concrete rooftop during the summer season increased with an evapotranspiration rate increase by a linear function type. The fitted function of the highest daily surface temperature decrease was [Temperature Decrease($^{\circ}C$)=$1.4361{\times}$(Evapotranspiration rate(mm/day))+8.83, $R^2$=0.59]. The decrease of the surface temperature by greening in the longer dry period was due to sun protection by the sedum canopy. The results of this study indicate that the extensive rooftop greening will assist in managing stormwater runoff and urban heat island through retention and evapotranspiration. Sedum kamtschaticum would be the ideal plant for a non-irrigated extensive green roof. The shading effects of Sedum kamtschaticum would be important as well as the evapotranspiration effects of that for the long-term mitigation effects of an urban heat island.