• Title/Summary/Keyword: 세대순증가율

Search Result 15, Processing Time 0.02 seconds

Life Table Analysis of the Brown Planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae) on Rice of Resistant Cultivars (벼멸구 저항성 품종벼에서 벼멸구의 생명표 분석)

  • Choi, Nak Jung;Jeong, In-Hong;Kwon, Deok Ho;Choi, Man-Young;Baik, Chai-Hun
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.526-532
    • /
    • 2017
  • Development, survival, and reproduction of brown planthopper (BPH) Nilaparvata lugens $St{\aa}l$ (Hemiptera: Delphacidae), were studied in laboratory at $25{\pm}2^{\circ}C$, $65{\pm}5%$ RH and a 16L : 8D hours photoperiodism on five rice cultivars of: Dongjin 1ho, Chungchungbyeo, Jangseongbyeo, Chinnongbyeo and Jungmo 1045. BPH nymphs successfully survived on all rice cultivars, although survival rate was lowest on Jangseongbyeo (36.0%). Developmental time of immature stages ranged from $11.7{\pm}0.59d$ on Jungmo 1045 to $12.8{\pm}0.59d$ on Chinnongbyeo. Reproductive period and female longevity were longest on Dongjin 1ho, Chinnongbyeo and Jungmo 1045 while highest fecundity of N. lugens being observed on these three rice cultivars. Highest and lowest net reproductive rates were calculated on rice cultivars, Jungmo 1045 and Jangseongbyeo, respectively. Mean generation time was the longest on rice cultivar Dongjin 1ho. Respective descending order of intrinsic rates of population increase were on Jungmo 1045, Chinnongbyeo, Dongjin 1ho, Chungchungbyeo and Jangseongbyeo. These population parameters showed that N. lugens can successfully survive and reproduce on Chinnongbyeo and Jungmo 1045.

Effects of Temperature on Reproduction and Development of Firefly, Luciola lateralis(Coleoptera: Lampyridae) (온가가 애반딧불이의 생식과 발육에 미치는 영향)

  • 이기열;안기수;강효중;박성규;김종길
    • Korean journal of applied entomology
    • /
    • v.42 no.3
    • /
    • pp.217-223
    • /
    • 2003
  • Effects of temperature on the development and reproduction of the Luciola lateralis were investigated at various temperatures. The development time of eggs, larvae, and pupae were shorter at higher temperatures than at lower ones. The insect did not develop at 10$^{\circ}C$ and 35$^{\circ}C$. The hatchability was 61.5% at 15$^{\circ}C$, 73.9% at 20$^{\circ}C$, 93.3% at 23$^{\circ}C$, 91.8% at 25$^{\circ}C$, 74.0% at 27$^{\circ}C$, and 46.0% at 30$^{\circ}C$, indicating the best hatchability rate at the temperature condition of 23 DC. Larval periods were 341.5:t 23.2 days at 15$^{\circ}C$, 265.5${\pm}$17.5 days at 20$^{\circ}C$, and 250.9${\pm}$11.7 days at 25$^{\circ}C$. Pupal periods were 94.7${\pm}$11.5 days at 15$^{\circ}C$, 41.7${\pm}$9.1 days at 20$^{\circ}C$, and 18.5${\pm}$7A days at 25$^{\circ}C$. Emergence rate was 23.3, 89.3 and 80.7%, respectively at the above temperatures. Adult longevity of female was 18.0 days at 15$^{\circ}C$, 2004 days at 20$^{\circ}C$, 10.7 days at 25$^{\circ}C$, and 5.8 days at 30$^{\circ}C$. Mean fecundity per female was higher at 20$^{\circ}C$ compared with at other temperatures. The developmental zero point temperatures (1) and the total effect temperatures (I<) of egg, larva, pupa, and complete development were 10.6, 14.0, and l3.1$^{\circ}C$ and 214.8, 1,564.8, and 229.2 degree-days, respectively. Mean generation time in days (T) was shorter at higher temperature. Net reproductive rate per generation (Ra) was the lowest at the highest temperature as well as at the lowest, and it was 177.19 which was the highest at 23$^{\circ}C$. The intrinsic rate of natural increase (r$\sub$m/) was highest at 27$^{\circ}C$ as 0.019. As a result, optimum range of temperature for L. lateralis growth was between 20-25$^{\circ}C$.

Effect of Temperature on Development and Reproduction of the Cotton Caterpillar, Palpita indica(Lepidoptera: Pyralidae) (목화바둑명나방(나비목:명나방과)의 발육과 생식에 미치는 온도의 영향)

  • Shin, Wook-Kyun;Kim, Gil-Hah;Song, Cheol;Kim, Jeong-Wha;Cho, Kwang-Yun
    • Korean journal of applied entomology
    • /
    • v.39 no.3
    • /
    • pp.135-140
    • /
    • 2000
  • Development and reproduction of the cotton caterpillar, Palpita indica, were investigatedunder different temperatures (15 .O, 17.5, 20.0, 22.5, 25 .O, 27.5, 30.0, 32.5, and 35 .O$^{\circ}$C). Duration fromegg to pre-adult of the cotton caterpillar were ranged from 68.6 days at 175$^{\circ}$C to 19.7 days at 35.0% (3.5times shorter growth period compared with that at 17S$^{\circ}$C). At 15.0$^{\circ}$C, cotton caterpillar eggs developedto the last larval instar but were not able to go through the pupal stage. The lower developmentalthreshold temperatures and degree-days of egg, larva, pupa, and complete development were 13.4, 10.6,11.6, and 11.5"C and 55.3,251.5, 138.3, and 479.8 degree days, respectively. The hatching, pupation andemergence rates were higher at 25.0eC and 27.5"C compared with other temperatures. The survival ratefrom the hatched larva to adult was the highest at 27.5"C. The preoviposition and the adult longevity were11.5 and 30.6 days at 17.5"C and 1.5 and 9.2 days at 35.0$^{\circ}$C, respectively. The mean fecundity perfemales was greater at 25.0$^{\circ}$C and 27.5"C compared with other temperatures. Mean generation time indays (T) was shorter on higher temperature. Net reproductive rate per generation (R,) was the lowest atthe highest temperature as well as at the lowest, and it was 199.1 which was the highest at 27.5"C. Theintrinsic rate of natural increase (r,) was highest at 30.0$^{\circ}$C as 0.148. As a result, optimum ranges oftemperature for P. indica growth were between 25.0-32.5"C .emperature for P. indica growth were between 25.0-32.5"C .t;C .

  • PDF

Optimum Population in Korea : An Economic Perspective (한국의 적정인구: 경제학적 관점)

  • Koo, Sung-Yeal
    • Korea journal of population studies
    • /
    • v.28 no.2
    • /
    • pp.1-32
    • /
    • 2005
  • The optimum population of a society or country can be defined as 'the population growth path that maximizes the welfare level of the society over the whole generations of both the present and the future, under the paths allowed by its endowments of production factors such as technology, capital and labor'. Thus, the optimum size or growth rate of population depends on: (i) the social welfare function, (ii) the production function, and (iii)demographic economic interrelationship which defines how the national income is disposed into consumption(birth and education of children included) and savings on the one hand and how the demographic and economic change induced thereby, in turn, affect production capacities on the other. The optimum population growth path can, then, be derived in the process of dynamic optimization of (i) under the constraints of (ii) and (iii), which will give us the optimum population growth rate defined as a function of parameters thereof. This paper estimates the optimum population growth rate of Korea by: specifying (i), (ii), and (iii) based on the recent development of economic theories, solving the dynamic optimization problem and inserting empirical estimates in Korea as the parametric values. The result shows that the optimum path of population growth in Korea is around TFR=1.81, which is affected most sensitively, in terms of the size of the partial elasticity around the optimum path, by the cost of children, share of capital income, consumption rate, time preference, population elasticity of utility function, etc. According to a survey implemented as a follow up study, there are quite a significant variations in the perceived cost of children, time preference rate, population elasticity of utility across different socio-economic classes in Korea, which implied that, compared to their counterparts, older generation and more highly educated classes prefer higher growth path for the population of Korea.

The Effect of the Anthracnose Resistant Chili Pepper (PepEST gene) on the Non-target Insects, Green Peach Aphids (Myzus persicae Sulzer, Homoptera) (유전자 변형 탄저병 저항성 고추(PepEST gene)가 비표적 곤충인 복숭아혹진딧물(Myzus persicae Sulzer)에 미치는 영향)

  • Park, Ji-Eun;Yi, Hoon-Bok;Kim, Chang-Gi;Jeong, Soon-Chun;Yoon, Won-Kee;Park, Kee-Woong;Lee, Bum-Kyu;Kim, Hwan-Mook
    • Korean journal of applied entomology
    • /
    • v.46 no.3
    • /
    • pp.343-348
    • /
    • 2007
  • To assess the environmental risks of transgenic chili pepper with PepEST gene on non-target organisms before it exposes to the agro-ecosystem environments, we conducted the three sets of green peach aphids (Myzus persicas S.) life table experiment under laboratory conditions (Temp. $25^{\circ}C$, R.H. 50-70%, Photoperiod L16 : D8) in series during 2005-2006. We measured the net reproductive rate ($R_0)^*$, the intrinsic rate of increase ($r_m$), the mean generation time ($T_c$), $fecundity^*$, life span, and reproduction period between non-transgenic chili peppers and transgenic chili peppers, respectively. The life span of green peach aphids from three sets was 31, 27, 25 days, and the period of life span was similar to the general average length of green peach aphids, 25-29 days. Although the first reproduction of transgenic pepper was similar to the non transgenic pepper (P>0.05), the fecundity and the net reproductive rate ($R_o$) by using Jackknife method of transgenic pepper were lower than those of non transgenic pepper (P<0.05). Conclusively, we observed the adverse effect from our results but we should execute further experiments to confirm the results at the fields with the similar way.