• Title/Summary/Keyword: 성형코크스

Search Result 7, Processing Time 0.018 seconds

Porosity and Electrical Resistivity of Formed Cokes Made from Anthracite and Phenolic resin (무연탄(無煙炭)과 페놀수지(樹脂)로부터 제조(製造)된 성형(成形)코크스의 기공율(氣孔率)과 전기저항율(電氣抵抗率))

  • Lee, Gye-Seung;Song, Young-Jun
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.19-27
    • /
    • 2008
  • In this study, the porosity and electrical resistivity of the formed coke produced by sintering the mixture of domestic anthracite and phenolic resin were mainly investigated, when the effect of the amount of binder, the hydration temperature and time, the hardening temperature and time, sintering temperature and time, the particle size of anthracite, the grade of anthracite, and the mixing ratio of phenolic resin on the physical properties of the coke were studied. As a result, It was found that the electrical resistivity and porosity of the formed coke are varied in the range of $0.3\sim1.2\Omega{\cdot}cm$ of $10\sim30%$, respectively, in accordance with the variation of factors.

The influence of factors on the strength of formed coke made with anthracite and phenolic resin (무연탄(無煙炭)과 페놀수지(樹脂)의 혼합(混合)소성에 의해 제조(製造)된 함형(咸形)코크스의 강도(强度))

  • Lee, Gye-Seung;Song, Young-Jun
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.57-61
    • /
    • 2008
  • The aim of this study is to produce the coke which can be used for the production of ferroalloy, by mixing phenolic resin and anthracite and sintering it. The influence of factors on the strength of coke were investigated. The results of this study are as follows: It is found that the anthracite coke of $100{\sim}150\;kgf/cm^2$ strength for ferroalloy can be made by a series of process as follows; Mixing homogeneously 6% liquefied phenolic resin and 6% water with $35{\sim}325$ mesh anthracite of low ash content. Making pellet by press the mixture in $10-50\;kgf/cm^2$ pressure. Dehydrating the pellet for 6 hrs at $50^{\circ}C$, and hardening it for 180 min at $200^{\circ}C$. Sinter the mixture for 6 hrs at $1,200^{\circ}C$.

The Effect of Fluorination on Wettability between Cokes and Binder Pitch for Carbon Block with High Density (고밀도 탄소블럭 제조를 위한 코크스와 바인더피치의 젖음성에 미치는 불소화의 영향)

  • Kim, Kyung Hoon;An, Donghae;Kim, Ji Wook;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.677-681
    • /
    • 2018
  • In this study, the carbon block was prepared using the fluorinated coke and binder pitch by molding compression to increase its density. After fluorination, it is confirmed that the fluorine element on the coke surface was introduced up to 24.14 at% using XPS analysis. The wettability between the fluorinated coke and binder pitch was evaluated according to the reaction temperature. From the result of contact-angle tests, it can be found that the wettability was improved up to 64.7% as more fluorine atoms were introduced on the surface of cokes. Also, the density of the carbon block with the highest amount of fluorine increased with 6.8% compared to that of using the carbon block prepared by the untreated cokes.

Properties Changes of Cokes and Forming Bodies Derived from Them during Artificial Graphite Manufacturing (인조흑연 제조공정중의 코크스와 그 성형체의 물성변화)

  • Gwon, Yeong-Bae;Kim, Hong
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.105-114
    • /
    • 1990
  • The relationship between the properties of two kinds of calcined cokes and graphitized forming bodies were examined. The microstructures of the forming bodies are already determined to some degree at the stage of baking. Calcined cokes as well as baked forming bodies using the same coke as filler were heat treated at various temperatures and their structural and properties changes with heat treated temperature were studied. The transition in properties changes with heat treatment in forming bodies were observed around $2000^{\circ}C$. The characteristics of the finial graphite bodies are strongly dependent on the properties of the raw material cokes.

  • PDF

Effect of β-Resin of Petroleum-based Binder Pitch on Density of Carbon Block (석유계 바인더 피치의 β-resin이 탄소블럭의 밀도에 미치는 영향)

  • Kim, Kyung Hoon;Lee, Sangmin;An, Donghae;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.432-436
    • /
    • 2017
  • Carbon blocks were prepared by compression molding process using the mixture of isotropic cokes and binder pitches, which were reformed with different ${\beta}$-resin contents from pyrolysis fuel oil. Physical and chemical properties and also thermal behavior of binder pitches were investigated through elemental analysis, FT-IR and thermogravimetric analysis, respectively. The adhesion of binder pitches to isotropic coke particles was evaluated from SEM images of the fracture surface of carbon blocks. From these results, it is shown that the adhesion between the cokes and binder was enhanced by increasing the ${\beta}$-resin content of binder pitches. The density of the carbon block after carbonization also increased from 1.325 to $1.383g/cm^3$ by increasing the ${\beta}$-resin content of binder pitches from 1.4 to 20.1%.

The Thermal Conductivity Characteristics of Carbon Block with Nano-Diamond (나노다이아몬드가 첨가된 탄소블록의 열전도도 특성)

  • Jun Soong Lee;Ji Hun Mun;Sungwook Joo;Seung Uk Lee;Min Il Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.608-612
    • /
    • 2023
  • Nano-diamond (ND) was added during the carbon block preparation process to increase the thermal conductivity of the carbon block. Added ND controlled the generated pore of carbon block due to the volatilization of the binder pitch during the carbonization process. The ND was added to the kneading process of coke and binder pitch, and carbon blocks were prepared by pressing and carbonization. As the amount of added ND increased, the ND ratio of the carbon block increased. The added ND made a pass-way for generated gas by volatilizing the binder pitch during the carbonization process, increasing the density of the carbon block and reducing the porosity. The thermal conductivity of the carbon block was improved by increased density, lowered porosity, and the high thermal conductivity of added ND.

Effect of Coal Tar Pitch Viscosity on Impregnation for Manufacture of Carbon Blocks with High Density (고밀도화 탄소 블록 제조 시 콜타르계 피치의 점도가 함침에 미치는 영향)

  • Cho, Jong Hoon;Hwang, Hye In;Kim, Ji Hong;Lee, Young-Seak;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.569-573
    • /
    • 2021
  • In this study, high-density carbon blocks were manufactured using coke, binder pitch, and impregnated pitch, then the effect of pitch fluidity on the densification of carbon blocks during the impregnation process was investigated. A green block was manufactured through high-pressure figuration of coke and binder pitch, and a carbon block was obtained through a heat treatment process. An impregnation process was performed to remove pores generated by volatilization of the binder pitch during the heat treatment process. The impregnation process was carried out the high-pressure reaction step of impregnating the pitch into the carbon block followed by the pretreatment step of melting the impregnation pitch. Melting of the impregnation pitch was carried out at 140~200 ℃, and the viscosity of the impregnation pitch decreased as the heat treatment temperature increased. The decrease in the viscosity of the impregnation pitch improved the fluidity and effectively impregnated the pores inside the carbon block, reducing the porosity of the carbon block by 83% and increasing the apparent density by 5%.