시간적 초해상도 기법은 일반 카메라로 찍은 영상을 고속카메라로 찍은 영상과 같이 보일 수 있도록 프레임률을 증가시키는 방법이다. 전자광학 센서는 다양한 감시정찰 무기체계에 탑재되는데, 각 무기체계별 작전요구성능에 따라 필요로 하는 전자광학 센서의 공간적 해상도와 시간적 해상도가 달라진다. 대부분의 영상센서가 30~60 프레임/초로 영상을 촬영하기 때문에, 표적의 이동 및 변화가 이보다 더 빠른 경우 프레임률의 증가가 필요하다. 본 논문은 채널별 색상정보 외삽법을 활용하여 프레임률을 증가시키는 기법을 제안한다. DMD의 각 화소를 카메라 센서의 각 화소와 정합한 후, 카메라 센서의 베이어 패턴에 맞추어 각 채널별로 화소 그룹을 분리한다. DMD를 이용해 일반 카메라의 한 프레임이 채널별로 서로 다른 연속된 노출 시간을 가지도록 조절하여, 촬영한 영상을 프레임률이 증가한 단일채널 영상으로 변환한다. 옵티컬 플로우 기법을 활용하여 각 채널별로 시점에 맞는 가상의 영상을 생성하여, 프레임률이 증가한 단일채널 영상을 컬러채널 영상으로 만들었다. 시뮬레이션을 통해 제안된 시간적 초해상도 기법의 성능을 확인하였다.
ATM과 같은 광대역 통신망을 위한 영상 부호화기는 다해상도 영상의 지원과 영상의 점진적 전송, 셀손실로 인한 피해의 최소화 등 망의 특성을 고려해야만 한다. 기존의 변환 부호화기방식으로는 이런 특성의 고려가 불가능하며, 따라서 다해상도 부호화 기법이 요구된다. 다해상도 부호화 기법으로는 기존의 대역분할 부호화가 있으나, 최근에는 웨이브렛 변환을 이용한 방법이 각광을 받고 있다. 본 논문에서는 스플라인 함수를 이용하여 설계된 웨이브렛 기저를 사용하여 대역 분할을 시도하고, 분할된 각 대역 별로 엔트로피 제한 벡터 양지화를 행하는 다해상도 영상 부호화기를 생각해 본다. 특별히 광대역 망에서의 셀 손실을 대비하기 위해 스플라인 웨이브렛으로 변환된 영상의 대역별 특성을 분석하여, 각 대역별 우선 순위를 설정하는 방법을 제안한다. 실험 결과 제안한 부호화기는 기존의 일반적인 벡터양자화기보다 약 3dB 이상의 성능 향상을 보였고, 다른 웨이브렛 기저를 사용한 엔트로피 제한 벡터양자화기 보다는 비트율에 따라서 $0.5\sim2dB$ 정도의 성능 향상을 가져옴을 볼 수 있었다.
인스턴스 분할에서 Mask-RCNN은 베이스 모델로 자주 사용된다. Mask-RCNN의 성능을 높이는 것은 파생된 모델에 영향을 미치기에 의미가 있다. Mask-RCNN에는 입력 이미지 크기를 배치 크기로 통일시키는 변환 모듈(transform module)이 있다. 이 논문에서는 Mask-RCNN의 성능 향상을 위해 변환 모듈의 크기 조정 부분에 딥러닝 기반 ASSR(Arbitrary-Scale Super-Resolution)을 적용하고, 스케일 정보를 모델의 IM(Integration Module)을 이용하여 주입한다. 제안하는 방법을 COCO 데이터세트에 적용하였을 때 인스턴스 분할 성능이 Mask-RCNN 성능보다 2.5 AP 높았다. 그리고 제안하는 IM 위치 최적화를 위한 실험에서는 FPN(Feature Pyramid Network)과 백본(backbone)이 결합하기 전의 'Top' 위치에 배치했을 때 가장 좋은 성능을 보였다. 따라서 제안하는 방법은 Mask-RCNN을 베이스 모델로 사용하는 모델들의 성능을 향상시킬 수 있다.
본 논문은 표본 기반 단일 영상 초해상도 복원 방식의 성능 개선을 위한 혼합 놈을 이용한 패치 유사도 검색 방식에 대해 제안한다. 초해상도 영상 복원 과정에서 패치의 국부 통계 특성을 반영하기 위해 패치 경사도에 따른 놈의 차수를 결정하고, 놈의 차수를 패치간의 유사도 검색을 위한 함수로 사용하는 방식에 대해 제안한다. 실험 결과를 통해 제안하는 유사도 검색 방식은 기존 검색 방식의 성능을 개선할 수 있는 능력이 있음을 확인할 수 있었다.
서로 다른 해상도의 좌, 우 영상으로 구성된 3DTV 시스템에서는 낮은 화질의 영상을 높은 화질의 해상도로 확대하여야 한다. 본 논문에서는 3종류의 보간기법을 실험 대상으로 하였으며 부호화기 및 부호화기에 각각 적용한 경우의 PSNR을 기준으로 성능을 분석하였다. 3종류의 보간 기법 중 SVC의 normative upsampling(JVT-R006) 보간기법의 성능이 우수함을 확인 하였다.
본 논문은 복합적인 상황을 고려한 데이터를 이용하여 얼굴인식을 하는 연구로서, 이산 웨이블렛을 기반으로 하는 다 해상도 분석 방법을 사용하고, 각 해상도로 분해된 영상 중, 스케일 함수에 의해 사영되어진 영역에 LDA(Linear Discriminant Analysis)를 적용하여, 도출된 결과가 기존의 방법들에 비해 더 안정된 성능을 나타냄을 보이고자 한다. 이를 위해, 웨이블렛을 적용하지 않은 이미지에 PCA, LDA, ICA를 이용한 결과와 웨이블렛을 적용한 이미지에 통계적 방법들을 이용한 경우, 그리고 웨이블렛의 각 대역에 통계적인 방법을 적용한 후, 대수적인 합을 하였을 때의 인식율을 학습과 검증의 이미지배열을 바꾸어 가며 총 열여덟회 실험하였다. 이에, 본 논문에서 제안한 방법이 이미지 배열에 영향을 덜 받는 안정적인 성능을 가지고 있음을 확인 할 수 있었다.
본 논문에서는 흉부 X선 영상으로부터 폐 종류 음영을 검출하기 위한 필터를 예측해서 바람직하게 평가하기 위한 방법을 제안한다. 더욱이 그 평가방법을 이용해서 이전부터 제안한 다중해상도 라플라시안-가우시안 필터의 평가를 행한다. 전문의의 진단보조 혹은 종합자동진단시스템의 구성요소로서 필터가 행하는 역할을 고려한 후에 필터가 만족해야할 조건 및 그 조건을 만족한 경우에 있어서 몇가지 성능평가 척도를 명확히 한다. 제안한 평가방법을 통해서 다중해상도 필터가 단일해상도 필터에 비해 높은 성능을 갖게됨을 명확히 한다.
편대비행위성을 이용하여 우주간섭계 영상시스템을 구현하였을때 위성의 배치에 따른 점분포함수(Point Spread Function, PSF)를 계산하고 관측될 영상을 예측하여 편대비행위성 간섭계 관측시스템의 예상되는 성능을 분석하였다. 적외선과 가시광 영역에서 관측하는 경우에 대하여 단일구경과 합성구경 관측시스템의 점분포함수를 계산하고 이에 해당되는 예측 영상의 해상도를 비교하였을 때, 합성구경으로 관측 시 더 높은 해상도를 보이는 것을 확인하였다. 또한 편대비행 위성을 이용하여 합성구경 관측을 하는 경우에 대하여 단순한 원형 배열뿐만 아니라 간섭계 관측에 유리한 골레이(Golay) 배열 등 다양한 위성 배치에 따른 점분포함수를 구하고 비교하여 위성 배치에 따른 간섭계관측 시스템의 성능 차이를 분석하였다. 이 결과를 통하여 실제 편대비행위성을 이용하여 간섭계 관측시스템을 구현할 때, 관측시스템을 구성하는 편대 위성의 개수와 배치를 효율적으로 결정할 수 있는 토대를 마련하였다.
신경망은 깊어질수록 gradient vanishing/exploding과 같은 네트워크가 불안정해지는 문제가 발생 한다. 잔차 블록을 이용하여 이러한 문제를 해결 할 수 있다. 본 논문에서는 영상 인식 분야에서 훌륭한 성능을 보여준 잔차 블록 기반의 깊은 합성곱 신경망을 통한 단일 영상 초해상도 복원 기법을 제안 한다. 제안한 알고리듬은 EDSR에 사용된 잔차 블록을 다양한 크기의 합성곱 연산을 통해 영상의 특징들을 다르게 분석하도록 수정하고 VDSR과 비슷한 수준의 복잡도로 구성하여 향상된 성능을 얻었다. 실험 결과, VDSR에 비해 PSNR이 최대 0.1dB까지 증가했다.
본 논문에서는 인공신경망 기반의 슈퍼 해상도(Super-resolution, SR) 기법을 이용하여 저해상도(Low-resolution, LR) 헤어 시뮬레이션을 고해상도(High-resolution, HR)로 노이즈 없이 표현할 수 있는 기법을 제안한다. LR과 HR 머리카락 간의 쌍은 헤어 시뮬레이션을 통해 얻을 수 있으며, 이렇게 얻어진 데이터를 이용하여 HR-LR 데이터 쌍을 설정한다. 학습할 때 사용되는 데이터는 머리카락의 위치를 지오메트리 이미지로 변환하여 사용한다. 우리가 제안하는 헤어 네트워크는 LR 이미지를 HR 이미지로 업스케일링 시키는 이미지 합성기를 위해 사용된다. 테스트 결과로 얻어진 HR 이미지가 HR 머리카락으로 다시 변환되면, 하나의 매핑 함수로 표현하기 어려운 머리카락의 찰랑거리는(Elastic) 움직임을 잘 표현할 수 있다. 합성 결과에 대한 성능으로는 전통적인 물리 기반 시뮬레이션보다 빠른 성능을 보였으며, 복잡한 수치해석을 몰라도 쉽게 실행이 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.