Proceedings of the Korea Information Processing Society Conference
/
2020.05a
/
pp.504-507
/
2020
ReLU(Rectified Linear Unit) 함수는 제안된 이후로 대부분의 깊은 인공신경망 모델들에서 표준 활성함수로써 지배적으로 사용되었다. 이후에 ReLU 를 대체하기 위해 Leaky ReLU, Swish, Mish 활성함수가 제시되었는데, 이들은 영상 분류 과업에서 기존 ReLU 함수 보다 향상된 성능을 보였다. 따라서 초해상화(Super Resolution) 과업에서도 ReLU 를 다른 활성함수들로 대체하여 성능 향상을 얻을 수 있는지 실험해볼 필요성을 느꼈다. 본 연구에서는 초해상화 과업에서 안정적인 성능을 보이는 EDSR(Enhanced Deep Super-Resolution Network) 모델의 활성함수들을 변경하면서 성능을 비교하였다. 결과적으로 EDSR 의 활성함수를 변경하면서 진행한 실험에서 해상도를 2 배로 변환하는 경우, 기존 활성함수인 ReLU 가 실험에 사용된 다른 활성함수들 보다 비슷하거나 높은 성능을 보였다. 하지만 해상도를 4 배로 변환하는 경우에서는 Leaky ReLU 와 Swish 함수가 기존 ReLU 함수대비 다소 향상된 성능을 보임을 확인하였다. 구체적으로 Leaky ReLU 를 사용했을 때 기존 ReLU 보다 영상의 품질을 정량적으로 평가할 수 있는 PSNR 과 SSIM 평가지표가 평균 0.06%, 0.05%, Swish 를 사용했을 때는 평균 0.06%, 0.03%의 성능 향상을 확인할 수 있었다. 4 배의 해상도를 높이는 초해상화의 경우, Leaky ReLU 와 Swish 가 ReLU 대비 향상된 성능을 보였기 때문에 향후 연구에서는 다른 초해상화 모델에서도 성능 향상을 위해 활성함수를 Leaky ReLU 나 Swish 로 대체하는 비교실험을 수행하는 것도 필요하다고 판단된다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.11A
/
pp.1652-1660
/
2000
본 논문에서는 DS/CDMA (Direct Sequence/Code Division Multipe Access) 시스템에서 임시 판정 함수로서 연판정 함수와 경판정 함수를 적용한 파이프라인화된 직렬 간섭 제어 구조(PSIC, Pipelined Successive Interference Cancellation)의 성능을 수식적으로 분석하고, 모의 실험을 통하여 검증한다. PSIC 구조는 다단 직렬 간섭 제거 구조(MSIC, Multistage Successive Interference Cancellation)가 가지는 복호지연(decoding delay)의 문제를 해결하기 위해 파이프라인 구조를 MSIC에 적용한 것이다. 제안된PSIC 구조는 하드웨어의 복잡도(hardwar complexity)를 희생하여 비트 오율(BER, Bit Error Rate)의 증가 없이 MSIC에서 발생하는 복호 지연을 줄일 수 있다. 또한 제안된 PSIC 구조에서 연판정 함수와 경판정 함수를 각 간섭 제거 단(Cancellation stage)에서의 임시 판정 함수로 사용하여 얻게 되는 PSIC 구조들의 성능을 비교한다. 분석 및 실험 결과에 의하면 제안되 PSIC 구조에서는 경판정 함수를 사용할때의 성능이 연판정 함수를 사용할때의 성능보다 우수함을 알 수 있었다.
Min, Kyung-Won;Kim, Jin-Koo;Kim, Sung-Choon;Chung, Lan
Journal of the Computational Structural Engineering Institute of Korea
/
v.14
no.2
/
pp.173-179
/
2001
성능지수는 제어 대상이 되는 구조물의 응답과 제어기의 성능에 관한 가중함수로 구성되어 있다. 따라서 가중함수의 설계에 따라 성능지수가 변화되며 제어 효율이 달라진다. 본 논문에서는 최적 능동제어 알고리듬의 일종인 시간 영역에서의 성능지수를 고려한 LQR기법과 LQG기법 및 주파수 영역에서의 성능지수를 고려한 H₂기법에 대하여 동일한 가중함수를 적용하여 제어 성능인 제어율과 제어력을 비교하는데 목적을 두고 있다. 그러나, LQG기법은 모든 상태 변수를 알아야 하는 LQR기법의 한계를 극복할 수 있으며 LQR기법과 동일 수준의 제어율과 제어력을 보이고 있고 출력 제어라는 장점을 고려하면 현실적인 기법이라고 말할 수 있다. 마지막으로 구조물 응답과 제어기의 주파수 특성을 고려하여 주파수 필터의 가중함수를 설계하는 H₂기법을 분석하였다. H₂기법은 제어력을 저주파수 영역에 집중시킬 수 있기 때문에 구조물 응답을 효과적으로 제어할 수 있는 방법으로 분석되었다.
This paper introduces a performance integration method to predict variation characteristic of a performance function of electromagnetic machines or devices due to manufacturing tolerances. A normalized performance function space and a hybrid mean value technique are adapted to effectively predict mean and variance, which can identify probabilistic distribution of the performance function. To verify the effectiveness and accuracy of the proposed method, a mathematical problem and a loudspeaker model are tested, and numerical results are compared with those of existing methods such as Monte Carlo simulation and univariate dimension reduction method.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.226-226
/
2011
최적 저수지운영을 위한 운영률 도출이나 강우-유출 및 수질 모형의 매개변수 추정 문제처럼 비선형적이고 추정해야할 변수의 수가 많은 경우, 수학적으로 모형화하기에 너무 복잡해서 선형계획법, 비선형계획법, 동적계획법 등을 사용하여 최적해를 구할 수 없는 경우도 있다. 이러한 문제에 대해서는 구조적 진화를 통해 최적해를 구하는 방법들이 사용된다. 일반적으로 미지수의 개수가 많아지면 전역최적해를 찾기가 어려워진다. 전역최적해를 찾는 여러 가지 방법들이 수자원 분야에서는 강우-유출모형의 매개변수를 추정하는데 많이 사용되고 있으며, 특히 유전자 알고리즘, SCE-UA 알고리즘 등 전역최적해를 찾는 메타휴리스틱 방법이 많이 사용되고 있다. 전역최적화 방법을 개발하는 연구자들은 최적화방법의 성능을 평가하기 위해 다양한 검사함수(test function)를 만들어 성능을 평가하고 있다. 본 연구에 사용한 검사함수는 Mishra의 연구(2006a, 2006b)에서 사용한 중요하고 복잡한 검사함수이다. 유전자 알고리즘, SCE-UA 알고리즘, DDS 알고리즘을 검사함수 중 전역해를 찾기 어려운 2 차원 함수 2 가지, 다차원 함수 4 가지 함수에 적용하여 각각의 탐색 성능을 평가하였다. 2차원 함수인 Bukin 함수에 대해서는 모든 최적화 방법이 전역최적해를 찾을 수 없었지만, 유전자 알고리즘이 가장 전역최적해에 가까웠고 다음으로 DDS 알고리즘 순서였다. 지역수렴 영역이 많을 것으로 판단되는 10, 30, 50 차원 Michalewicz 함수에 대해서는 DDS 알고리즘으로 구한 최적해가 전역최적해와 매우 근접하였고 다음으로 SCE-UA 알고리즘, 유전자 알고리즘 순이었다. 지역수렴 영역이 상대적으로 다른 함수보다 넓은 10 차원 Schwefel 함수에 대해서는 DDS 알고리즘으로 구한 최적해가 전역최적해와 거의 근접하였고 유전자 알고리즘과 SCE-UA 알고리즘은 매우 큰 편차를 보였다. 40, 80 차원 Schwefel 함수에 대해서는 3 가지 알고리즘 모두 전역최적해와 편차를 보였지만 DDS 알고리즘에 의한 최적해와 다른 두 알고리즘에 의한 최적해는 1 오더(order) 정도의 차이가 났다. 지역수렴 영역이 큰 Michalewicz 함수와 Schwefel 함수에 대한 결과는 매우 흡사한 결과이다. 이상과 같은 결과로, 유전자 알고리즘은 매개변수의 수가 적을 경우 우수한 탐색성능을 가졌으며, SCE-UA 알고리즘은 Griewank, Rastrigin 함수와 같은 형태인 경우 우수한 성능을 보였다. DDS 알고리즘은 전체적으로 우수한 탐색 능력을 가진 것으로 판단된다. 그러므로 수위구간 영역별 저수지운영률 도출을 위한 적절한 최적화방법으로 DDS 알고리즘을 선정하였다.
Mun-Ju Shin;Jeong-Hun Kim;Su-Yeon Kang;Jeong-Han Lee;Kyung Goo Kang
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.520-520
/
2023
제주도 동부 중산간 지역은 화산암으로 구성된 지하지질로 인해 지하수위의 변동폭이 크고 변동양상이 복잡하여 인공신경망(Artificial Neural Network, ANN) 모델 등을 활용한 지하수위의 예측이 어렵다. ANN에 적용되는 활성화함수에 따라 지하수의 예측성능은 달라질 수 있으므로 활성화함수의 비교분석 후 적절한 활성화함수의 사용이 반드시 필요하다. 본 연구에서는 5개 활성화함수(sigmoid, hyperbolic tangent(tanh), Rectified Linear Unit(ReLU), Leaky Rectified Linear Unit(Leaky ReLU), Exponential Linear Unit(ELU))를 제주도 동부 중산간지역에 위치한 2개 지하수 관정에 대해 비교분석하여 최적 활성화함수 도출을 목표로 한다. 또한 최적 활성화함수를 활용한 ANN의 적용성을 평가하기 위해 최근 널리 사용되고 있는 순환신경망 모델인 Long Short-Term Memory(LSTM) 모델과 비교분석 하였다. 그 결과, 2개 관정 중 지하수위 변동폭이 상대적으로 큰 관정은 ELU 함수, 상대적으로 작은 관정은 Leaky ReLU 함수가 지하수위 예측에 적절하였다. 예측성능이 가장 낮은 활성화함수는 sigmoid 함수로 나타나 첨두 및 최저 지하수위 예측 시 사용을 지양해야 할 것으로 판단된다. 도출된 최적 활성화함수를 사용한 ANN-ELU 모델 및 ANN-Leaky ReLU 모델을 LSTM 모델과 비교분석한 결과 대등한 지하수위 예측성능을 나타내었다. 이것은 feed-forward 방식인 ANN 모델을 사용하더라도 적절한 활성화함수를 사용하면 최신 순환신경망과 대등한 결과를 도출하여 활용 가능성이 충분히 있다는 것을 의미한다. 마지막으로 LSTM 모델은 가장 적절한 예측성능을 나타내어 다양한 인공지능 모델의 예측성능 비교를 위한 기준이 되는 참고모델로 활용 가능하다. 본 연구에서 제시한 방법은 지하수위 예측과 더불어 하천수위 예측 등 다양한 시계열예측 및 분석연구에 유용하게 사용될 수 있다.
Proceedings of the Korea Society for Industrial Systems Conference
/
2004.06a
/
pp.3-7
/
2004
본 연구에서는 학습기능을 갖는 결정론적 볼츠만 머신에 비단조 뉴런을 이용하여 학습 성능을 수치 시뮬레이션을 통하여 분석한다. 먼저 네트워크의 은닉층에 비단조 및 단조뉴런을 이용한 경우에 대하여 각각 활성화 함수로 시그모이드 함수와 end-cut-off 타입의 비단조함수를 사용한 경우에 대하여 성능을 비교한다. 또한, VHDL을 이용해 설계한 DBM 네트워크에 시그모이드 함수와 end-cut-off 타입의 비단조함수를 사용한 경우에 대하여 시뮬레이션을 통해 수치 시뮬레이션과 성능이 같은지 비교하고 그 유용성을 입증한다.
Proceedings of the Korea Information Processing Society Conference
/
2003.05a
/
pp.121-124
/
2003
계산량이 매우 큰 작업의 경우는 단일 프로세서를 이용할 경우 많은 계산 시간이 소요된다 이러한 문제점을 극복하고자 저비용 고효율의 PC Clustering 기법을 사용하면 비용적인 절감의 효과를 얻을 수 있다. 본 논문은 PC Clustering을 이용한 병렬처리를 수행함으로써 시간의 단축을 도모하되 표준 MPI 함수 중 Collective Communication을 취급하는 함수들의 성능을 향상시켜 개선하고 그 성능을 측정하는데 목적이 있다. 또한 표준 MPI 함수를 사용하는 MPICH와 표준 MPI 함수 중 Collective Communication을 사용하는 함수들의 데이터를 압축하여 전송하도록 MPI를 개선하였다. 실험은 윈도우 2000을 탑재한 20개의 노드를 가지는 시스템을 이용하였다. 본 실험의 견과로써 데이터의 양과 노드 수를 증가시킬수록 압축 MPI의 성능이 표준 MPI의 성능을 능가함을 확인할 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.475-477
/
2000
본 논문에서는 적응적 성분분석 기법을 이용하여 radial basis 함수 신경망의 학습시간과 분류성능을 개선한 새로운 기법을 제안하였다. 제안된 기법에서 적응적 성분분석 기법은 radial basis 함수 신경망의 은닉층 뉴런 개수와 중심값 설정을 위해 이용하였다. 제안된 기법의 radial basis 함수 신경망을 200명의 암환자를 2부류(초기와 악성)로 분류하는 문제에 적용하여 시뮬레이션한 결고, k-평균 군집화 알고리즘을 이용한 radial basis 함수 신경망과 비교할 때 학습시간과 시험 데이터의 분류에서 더욱 우수한 성능이 있음을 확인할 수 있었다.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.13
no.7
/
pp.679-686
/
2002
Based on the alternating series expansion of error probability function due to phase noise in PSK systems, the performance evaluations for Tikhonov and Gaussian probability density functions were performed in this paper. The range of the signal-to-noise ratio of recovered carrier signal which provides the same dependency between the error performances by Tikhonov function and Gaussian function was analyzed via loss evaluation due to phase noise. The phase noise with 1/f$^2$ characteristic was generated based on the relationship of the phase noise spectral density and the modulation index for frequency modulation signal. Using the generated phase noise as the input signal for digital satellite communication receiver, the performance losses due to the phase noise were measured and evaluated with the analyzed performance characteristics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.