• Title/Summary/Keyword: 성능 설계

Search Result 16,786, Processing Time 0.039 seconds

Optimization of Link-level Performance and Complexity for the Floating-point and Fixed-point Designs of IEEE 802.16e OFDMA/TDD Mobile Modem (IEEE 802.16e OFDMA/TDD 이동국 모뎀의 링크 성능과 복잡도 최적화를 위한 부동 및 고정 소수점 설계)

  • Sun, Tae-Hyoung;Kang, Seung-Won;Kim, Kyu-Hyun;Chang, Kyung-Hi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.95-117
    • /
    • 2006
  • In this paper, we describe the optimization of the link-level performance and the complexity of floating-point and fixed-point methods in IEEE 802.16e OFDMA/TDD mobile modem. In floating-point design, we propose the channel estimation methods for downlink traffic channel and select the optimized method using computer simulation. So we also propose efficent algorithms for time and frequency synchronization, Digital Front End and CINR estimation scheme to optimize the system performance. Furthermore, we describe fixed-point method of uplink traffic and control channels. The superiority of the proposed algorithm is validated using the performances of Detection, False Alarm, Missing Probability and Mean Acquisition Time, PER Curve, etc. For fixed-point design, we propose an efficient methodology for optimized fixed-point design from floating-point At last, we design fixed-point of traffic channel, time and frequency synchronization, DFE block in uplink and downlink. The tradeoff between performance and complexity are optimized through computer simulations.

A Computational Study on the Performance Prediction of the Two-Stage Axial Compressor (2단 축류압축기 성능예측에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Kim, Jin-Han;Yang, Soo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.77-83
    • /
    • 2002
  • A computational study on the performance prediction of a two-stage axial compressor has been performed. A quasi-steady mixing-plane method is used on the rotor/stator interface to simulate the unsteady interaction phenomena. Detail flow mechanisms, for example, choke, stall, shock/boundary interaction, etc., have been observed and discussed in conjunction with performance characteristics. Calculational data agree reasonably well with the experimental data in terms of the performance characteristics showing the applicability of computational methods to the design validation of multistage axial compressors instead of experimental methods. But it is found that the stall margin of the original compressor was rather small, thus the design modification adopting a simple 1D/2D method has been conducted and its corresponding computations are also carried out. As a result of the redesign process, the stall margin becomes wide enough, but the overall performance is unsatisfactory, therefore, it seems that the redesign of the blades using 3-D methods is needed in the future work.

Quantitative Deterioration and Maintenance Profiles of Typical Steel Bridges based on Response Surface Method (응답면 기법을 이용한 강교의 열화 및 보수보강 정량화 이력 모델)

  • Park, Seung-Hyun;Park, Kyung Hoon;Kim, Hee Joong;Kong, Jung-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.765-778
    • /
    • 2008
  • Performance Profiles are essential to predict the performance variation over time for the bridge management system (BMS) based on risk management. In general, condition profiles based on experts opinion and/or visual inspection records have been used widely because obtaining profiles based on real performance is not easy. However, those condition profiles usually don't give a good consistency to the safety of bridges, causing practical problems for the effective bridge management. The accuracy of performance evaluation is directly related to the accuracy of BMS. The reliability of the evaluation is important to produce the optimal solution for distributing maintenance budget reasonably. However, conventional methods of bridge assessment are not suitable for a more sophisticated decision making procedure. In this study, a method to compute quantitative performance profiles has been proposed to overcome the limitations of those conventional models. In Bridge Management Systems, the main role of performance profiles is to compute and predict the performance of bridges subject to lifetime activities with uncertainty. Therefore, the computation time for obtaining an optimal maintenance scenario is closely related to the efficiency of the performance profile. In this study, the Response Surface Method (RSM) based on independent and important design variables is developed for the rapid computation. Steel box bridges have been investigated because the number of independent design variables can be reduced significantly due to the high dependency between design variables.

Design of a Low-rise RC Building with Damping System (저층 철근콘크리트 건축물의 제진 구조 설계)

  • Lee, Eun-Jin;Hyoun, Chang-Kook;Choi, Ki-Sun;You, Young-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.454-457
    • /
    • 2011
  • 본 논문에서는 국내에서 아직 기준이 마련되지 않은 제진설계에 대한 접근을 소개하였다. ASCE 7-05 기준에 근거하여 국내 5층 규모의 철근콘크리트 신축 건물에 제진 설계를 수행하였다. 우리나라의 현행 기준을 만족하면서 효과적인 제진 시스템 설계를 위한 방법을 소개한다. ASCE 7-05 기준에서는 제진 구조물 해석 시 부재력이 공칭강도의 1.5배를 초과하지 않은 경우 경계비선형 해석을 허용하고 있다. 이 때의 제진 설계 프로세스는 기존의 중력하중 및 등가정적하중의 75%에 의한 단면을 가정하여 부재설계를 실시하고, 선형 시간이력 해석을 통해 제진장치 및 가새를 설계한다. 이후 우리나라 실정에 맞도록 보정된 인공 지진파를 입력하여 경계비선형 해석을 실시하고, 밑면 전단력 및 층간변위 등의 만족여부를 검토한다. 이 때 목표성능을 완전탄성설계 또는 유사탄성설계로 정하여 목표성능을 만족하는지도 검토하여야 한다. 본 논문에 적용한 신축 건물은 유사탄성 설계를 위해 경계비선형 해석을 실시하였고, 가장 효과적인 제진 설계를 위해 댐퍼의 종류, 설치방법, 개수, 변위 증폭비 등을 변수로 한 case study를 진행하였다. 해석 결과 목표성능을 만족하는 범위 내에서 가장 효과적인 제진 설계는 점성댐퍼, 이층 토글형태, 증폭비 2.0, 총 8개의 댐퍼를 설치하는 것으로 나타났다.

  • PDF

Design Checklist for Improving Building Maintenance (건축물 유지관리성능 향상을 위한 설계 Checklist)

  • Baeck Ha-Kyu;Kim Seung-Jin;Lee Chan-Sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.3 s.25
    • /
    • pp.111-119
    • /
    • 2005
  • The degree to which the design of a building embraces maintenance considerations has a great impact on its performance. Modern buildings are designed to meet higher building standards than in previous times. As the result, the influence of design on the maintenance of buildings is greater than ever before. The issue of building maintenance is a universal one and its consideration at the design stage is of great importance on the future performance of the building. Even though many studies have conducted to improve building performance, almost all of the results of those studies have not been utilized effectively during design. The purpose of this paper is to suggest a checklist which could be used for incorporating building maintenance concept in the design. The suggested checklist was made by reviewing previous studies and then refined through consulting with professionals of relevant fields.

Seismic Performance-Based Design for Breakwater (방파제의 성능기반 내진설계법)

  • Kim, Young-Jun;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.91-101
    • /
    • 2022
  • The 1995 Kobe earthquake caused a massive damage to the Port of Kobe. Therefore, it was pointed out that it was impossible to design port structures for Level II (Mw 6.5) earthquakes with quasi-static analysis and Allowable Stress Design methods. In Japan and the United States, where earthquakes are frequent, the most advanced design standards for port facilities are introduced and applied, and the existing seismic design standards have been converted to performance-based design. Since 1999, the Korean Port Seismic Design Act has established a definition of necessary facilities and seismic grades through research on facilities that require seismic design and their seismic grades. It has also established a performance-based seismic design method based on experimental verification. In the performance-based seismic design method of the breakwater proposed in this study, the acceleration time history on the surface of the original ground was subjected to a fast Fourier transform, followed by a filter processing that corrected the frequency characteristics corresponding to the maximum allowable displacement with respect to performance level of the breakwater and the filtered spectrum. The horizontal seismic coefficient for the equivalent static analysis considering the displacement was calculated by inversely transforming (i.e., subjected to an inverse fast Fourier transform) into the acceleration time history and obtaining the maximum acceleration value. In addition, experiments and numerical analysis were performed to verify the performance-based seismic design method of breakwaters suitable for domestic earthquake levels.

Water Performance Test of Pumps for a 7 Ton Class Rocket Engine (7톤급 로켓엔진용 펌프 수류 성능시험)

  • Hong, Soonsam;Kim, Daejin;Choi, Changho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.89-95
    • /
    • 2015
  • Performance test was conducted for an oxidizer pump and a fuel pump for a 7 ton class rocket engine, by using water. The pumps were driven by an electric motor. The hydrodynamic performance and the suction performance were measured at flow ratio of the design and off-design conditions. Head-flow curve, efficiency-flow curve, and head-cavitation number curve were obtained. It is confirmed that the pumps can satisfy the design requirements of hydrodynamic performance in terms of the head and the efficiency. The pumps also satisfied the design requirements of suction performance.

Off-design Performance Analysis based on Experimental Data of a Micro Gas Turbine Engine (실험데이터 기반 마이크로 가스터빈엔진 탈 설계점 성능해석)

  • Kim, Seungjae;Choi, Seongman;Rhee, Dongho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.64-71
    • /
    • 2018
  • It is essential to understand the characteristics of gas turbine components in order to carry out an off-design analysis of a gas turbine engine. In this study, a micro gas turbine engine test system was constructed to understand the performance characteristics of gas turbines. The temperature and pressure in the flow path of the micro gas turbine was collected by measuring the engine spool speed, and a compressor map was constructed by using the experimental data. The exhaust gas was collected at the turbine outlet and the combustion efficiency was calculated. An off-design performance analysis at ground static was performed using GasTurb software by applying the compressor map and combustion efficiency obtained from the experimental data. Futhermore, we compared and evaluated the analysis results with engine operating data.

터보펌프용 1.4MW급 터빈의 전산유동해석

  • Park, Pyun-Goo;Jeong, Eun-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.153-162
    • /
    • 2005
  • Through a preliminary design process, four design candidates for a 1.4MW class partial admission turbine have been chosen and the numerical analyses using a frozen rotor method are applied to estimate their performance. Each flow analysis result was compared with others and the optimum design was selected. Flow characteristics in the passages and some types of losses induced by shocks and wakes were found from calculation results. A new rotor blade was redesigned based on these calculations and this result is compared with previous one through flow analysis.

  • PDF

소형 프로펠러 경항공기 복합재 날개의 구조설계에 관한 연구

  • 공창덕;강명훈;정종철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.37-37
    • /
    • 2000
  • 복합재료는 높은 무게비 강도 및 강성뿐만 아니라 우수한 재료 특성 때문에 경량화와 구조적 안전성이 요구되는 항공기의 구조재로서 사용이 증대되고 있다. 소형 민용항공기는 구조적 안전성과 함께 제작과 정비, 유지보수의 용이성이 중요시된다. 본 연구에서는 복합재료를 구조재로 사용하였을 때의 성능변화와 경량화 등을 검토하기 위하여 기존의 알루미늄 합금을 이용하여 설계된 소형 프로펠러 경항공기 날개의 구조재로서 복합재료를 사용하여 재설계하였다. 날개의 기본 구조는 스킨, 스파, 웹으로 구성된 상자형 단면으로 설계하였으며 날개의 구조재로서 탄소/에폭시를 사용하여 상용 유한요소해석코드인 NISAII를 이용하여 굽힘, 좌굴 등의 응력해석을 수행하였고 기존 설계된 날개와의 성능비교를 위하여 알루미늄 합금으로 설계된 날개를 모델링하여 해석한 결과와 비교하였다. 비교결과 구조재로 탄소/에폭시를 사용하여 설계된 날개가 무게비 성능면에서 더 우수함을 확인하였다.

  • PDF