• Title/Summary/Keyword: 성능평가장치

Search Result 1,820, Processing Time 0.034 seconds

Assessment of Penetration Performance and Optimum Design of Shaped Charge Device for Underwater Steel Cutting (수중 강재절단을 위한 성형폭약 장치 최적설계 및 관입성능 평가)

  • Ko, Young-Hun;Kim, Seung-Jun;Kim, Jung-Gyu;Yang, Hyung-Sik;Kim, Hee-Do;Park, Hoon;Noh, You-Song;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this study, several underwater steel cutting tests and AUTODYN numerical analyses were conducted to evaluate the penetration performance of a shaped charge device. Parameter analyses for the contribution rate were conducted by using the robust design method. The parameters adopted in this study were chamber type, stand-off, and wire setting, each of which had three levels in the analysis. Analysis results showed that the contribution rate was most affected by the stand-off, followed by the chamber type and wire setting. Experiments of underwater steel cutting were conducted at water depth of 25m. As expected, the experiments and numerical simulation showed similar results for underwater steel cutting performance, and thus the feasibility of the shaped charge device for underwater steel cutting at deep water depth was verified.

Development and Performance Evaluation of a Liquid Particle Generator (액적 발생 장치 개발 및 성능 평가)

  • Heo, Jung-Hyuk;Kim, Dae-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4334-4340
    • /
    • 2012
  • In this work, we developed and evaluated the Liquid Particle Generator for generating fine particles in the air. The Liquid Particle Generator, which was based on the spray-evaporation method, had two kinds of orifices: 0.3 mm and 0.5 mm. The Liquid Particle Generator was operated at different pressure between 1 bar and 4 bars to find relationship between input pressure and droplet output rate. In addition, the size distribution of the droplets generated by the Liquid Particle Generator with different orifices was measured by the SMPS system and the optical particle counter. As a result, it was shown that the Liquid Particle Generator with 0.3 mm orifice generated droplets of around 0.3 ${\mu}m$ and atomized particles very stably. The Liquid Particle Generator having 0.5 mm orifice generated bigger droplets, compared with the Liquid Particle Generator with 0.3 mm orifice. Additionally, in these Liquid Particle Generators (0.3 mm and 0.5 mm orifice), little coagulation of particles did occur because of fine droplets atomized by the jet. Therefore, the Liquid Particle Generator could be used as an aerosol generator for atomizing fine particles.

Performance Evaluation of Measuring Instrument for Infra-Red Signature Suppression System Model Test (적외선 신호저감 장치 모형시험을 위한 계측기의 성능평가)

  • SeokTae Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.21-27
    • /
    • 2023
  • Modern naval ships install an Infra-Red Signature Suppression system (IRSS) in their exhaust pipe to reduce infrared signature emitted to the outside. In addition, naval ships are strategic assets with a very long life cycle, so high reliability of the performance of the equipment on board must be guaranteed. Therefore, equipment such as IRSS is evaluated for performance through model testing at the design stage. A variety of measuring instruments are used in IRSS model testing, and the reliability of these instruments must also be guaranteed. In this paper, a study was conducted to evaluate the reliability of measurement equipment used in IRSS model testing. The test equipment and instruments used were a hot gas wind tunnel, pitot tube, digital differential pressure gauge, thermocouple sensor, and digital recorder. As the fan speed of the hot gas wind tunnel increased, the measurement deviation of the flow decreased, and the temperature output of the thermocouple sensor showed differences in response time and stability depending on the method used.

The test methods of Lifting performance and Environmental resistance tests using power assist device for a fireman to rescue humans (인명구조용 소방대원 근력지원장치의 양중성능 및 내환경 시험 방법)

  • Lee, Minsu;Park, Chan;Lee, Seonmin;Lee, Dongeun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.358-365
    • /
    • 2017
  • As the damage caused by disasters increases rapidly around the world, it is necessary to develop the technology for equipment to reduce human injury. Therefore in the support of fire safety and 119 rescue and rescue technology research and development project, in the "Development of a power assist device for a fireman to rescue humans(2015 ~ 2018)" for life saving restoration, we are developing equipment that satisfies the lifting performance considering the disaster environment and the disaster response scenario(Amount of load over 100 kg, height of over 1 m, height over middle 60 cm, speed over 0.2 m/s). In this study, we propose a lifting performance and environmental test method to evaluate the usefulness of the power-assisted device and analyze and verify detailed specifications of the device through dynamics analysis of the lifting performance test. This study suggests that the proposed test method can be applied practically to evaluate whether a stable performance of a power-assisted device is achieved.

Design and Performance Test of 10,000 lbf-in Class Dual Redundant Hinge Line Electro-Mechanical Actuator System (10,000 lbf-in급 힌지라인 이중화 전기식 구동장치 설계 및 성능평가)

  • Jeong, Seuhg-Ho;Seol, Jin-Woon;Heo, Seok-Haeng;Lee, Byung-Ho;Cho, Young-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.153-160
    • /
    • 2019
  • Electro-mechanical actuator system for aircraft has advantages in compactness and its lightweight, compared to the hydraulic actuator system. Hinge line actuator has low air resistance and is suitable for special purpose such as stealth. This paper describes design contents of 10,000 lbf-in class dual redundant hinge line electro-mechanical actuator system for performance test. The control structure was designed to minimize impact of torque fighting. A mathematical model is proposed to analyze and validate the performances of actuator by comparison with experiment results.