• Title/Summary/Keyword: 성능정보 제공

Search Result 4,896, Processing Time 0.033 seconds

Basic Properties and Solution Behavior of New Naturally Derived Cosmetic Preservative, and Stability of Cosmetic Formulation (신규 화장품용 천연유래 보존제의 물성 측정, 용액 거동 및 보존제 포함 화장품의 제형 안정성)

  • Subin Shin;Jeongeun Park;Nayeon Ko;Mijung Kim;Hyewon Shin;Dasom Lee;Narae Kim;Taeshik Earmme;Gugin Jeong;Joonwon Bae
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.122-127
    • /
    • 2024
  • Cosmetic preservatives are an important class of ingredients in terms of ensuring sustainable use and providing customer satisfaction. Recently, a great deal of interest has been drawn to the production and use of toxic-free, naturally derived preservatives. In this work, a new naturally derived preservative (laurimino bispropanediol, LB) was developed to replace the most widely used diol preservatives, such as 1,2-hexanediol or 1,2-octanediol. The basic properties of the obtained preservative were measured, and the solution behavior of the preservative in an aqueous medium was examined. The feasibility of micelle formation in the preservative solution was investigated using the fluorescence (FL) based pyrene method. Micelle formation was feasible owing to the relatively long hydrophobic chains and increased hydroxyl groups in the preservative molecules. The emulsification capability of the preservative was assessed using the Rosano and Kimura method, showing that the preservative possessed emulsifying capability in an organic solvent (benzene) and soy bean oil. In addition, the dispersion stability of cosmetic formulations, including the new LB preservatives such as essence and lotion, was demonstrated by comparing the light transmittance of the formulations. This article provides important information for future research regarding the synthesis and practical applications of new toxic-free naturally derived preservatives.

Text Mining-Based Analysis of Hyundai Automobile Consumer Satisfaction and Dissatisfaction Factors in the Chinese Market: A Comparison with Other Brands (텍스트 마이닝을 이용한 현대 자동차 중국시장 소비자의 만족 및 불만족 요인 분석 연구: 다른 브랜드와의 비교)

  • Cui Ran;Inyong Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.539-549
    • /
    • 2024
  • This study employed text mining techniques like frequency analysis, word clouds, and LDA topic modeling to assess consumer satisfaction and dissatisfaction with Hyundai Motor Company in the Chinese market, compared to brands such as Toyota, Volkswagen, Buick, and Geely. Focusing on compact vehicles from these brands between 2021 and 2023, this study analyzed customer reviews. The results indicated Hyundai Avante's positive factors, including a long wheelbase. However, it also highlighted dissatisfaction aspects like Manipulate, engine performance, trunk space, chassis and suspension, safety features, quantity and brand of audio speakers, music membership service, separation band, screen reflection, CarLife, and map services. Addressing these issues could significantly enhance Hyundai's competitiveness in the Chinese market. Previous studies mainly focused on literature research and surveys, which only revealed consumer perceptions limited to the variables set by the researchers. This study, through text mining and comparing various car brands, aims to gain a deeper understanding of market trends and consumer preferences, providing useful information for marketing strategies of Hyundai and other brands in the Chinese market.

Machine Learning Based MMS Point Cloud Semantic Segmentation (머신러닝 기반 MMS Point Cloud 의미론적 분할)

  • Bae, Jaegu;Seo, Dongju;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.939-951
    • /
    • 2022
  • The most important factor in designing autonomous driving systems is to recognize the exact location of the vehicle within the surrounding environment. To date, various sensors and navigation systems have been used for autonomous driving systems; however, all have limitations. Therefore, the need for high-definition (HD) maps that provide high-precision infrastructure information for safe and convenient autonomous driving is increasing. HD maps are drawn using three-dimensional point cloud data acquired through a mobile mapping system (MMS). However, this process requires manual work due to the large numbers of points and drawing layers, increasing the cost and effort associated with HD mapping. The objective of this study was to improve the efficiency of HD mapping by segmenting semantic information in an MMS point cloud into six classes: roads, curbs, sidewalks, medians, lanes, and other elements. Segmentation was performed using various machine learning techniques including random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), and gradient-boosting machine (GBM), and 11 variables including geometry, color, intensity, and other road design features. MMS point cloud data for a 130-m section of a five-lane road near Minam Station in Busan, were used to evaluate the segmentation models; the average F1 scores of the models were 95.43% for RF, 92.1% for SVM, 91.05% for GBM, and 82.63% for KNN. The RF model showed the best segmentation performance, with F1 scores of 99.3%, 95.5%, 94.5%, 93.5%, and 90.1% for roads, sidewalks, curbs, medians, and lanes, respectively. The variable importance results of the RF model showed high mean decrease accuracy and mean decrease gini for XY dist. and Z dist. variables related to road design, respectively. Thus, variables related to road design contributed significantly to the segmentation of semantic information. The results of this study demonstrate the applicability of segmentation of MMS point cloud data based on machine learning, and will help to reduce the cost and effort associated with HD mapping.

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.

Study on 3D Printer Suitable for Character Merchandise Production Training (캐릭터 상품 제작 교육에 적합한 3D프린터 연구)

  • Kwon, Dong-Hyun
    • Cartoon and Animation Studies
    • /
    • s.41
    • /
    • pp.455-486
    • /
    • 2015
  • The 3D printing technology, which started from the patent registration in 1986, was a technology that did not attract attention other than from some companies, due to the lack of awareness at the time. However, today, as expiring patents are appearing after the passage of 20 years, the price of 3D printers have decreased to the level of allowing purchase by individuals and the technology is attracting attention from industries, in addition to the general public, such as by naturally accepting 3D and to share 3D data, based on the generalization of online information exchange and improvement of computer performance. The production capability of 3D printers, which is based on digital data enabling digital transmission and revision and supplementation or production manufacturing not requiring molding, may provide a groundbreaking change to the process of manufacturing, and may attain the same effect in the character merchandise sector. Using a 3D printer is becoming a necessity in various figure merchandise productions which are in the forefront of the kidult culture that is recently gaining attention, and when predicting the demand by the industrial sites related to such character merchandise and when considering the more inexpensive price due to the expiration of patents and sharing of technology, expanding opportunities and sectors of employment and cultivating manpower that are able to engage in further creative work seems as a must, by introducing education courses cultivating manpower that can utilize 3D printers at the education field. However, there are limits in the information that can be obtained when seeking to introduce 3D printers in school education. Because the press or information media only mentions general information, such as the growth of the industrial size or prosperous future value of 3D printers, the research level of the academic world also remains at the level of organizing contents in an introductory level, such as by analyzing data on industrial size, analyzing the applicable scope in the industry, or introducing the printing technology. Such lack of information gives rise to problems at the education site. There would be no choice but to incur temporal and opportunity expenses, since the technology would only be able to be used after going through trials and errors, by first introducing the technology without examining the actual information, such as through comparing the strengths and weaknesses. In particular, if an expensive equipment introduced does not suit the features of school education, the loss costs would be significant. This research targeted general users without a technology-related basis, instead of specialists. By comparing the strengths and weaknesses and analyzing the problems and matters requiring notice upon use, pursuant to the representative technologies, instead of merely introducing the 3D printer technology as had been done previously, this research sought to explain the types of features that a 3D printer should have, in particular, when required in education relating to the development of figure merchandise as an optional cultural contents at cartoon-related departments, and sought to provide information that can be of practical help when seeking to provide education using 3D printers in the future. In the main body, the technologies were explained by making a classification based on a new perspective, such as the buttress method, types of materials, two-dimensional printing method, and three-dimensional printing method. The reason for selecting such different classification method was to easily allow mutual comparison of the practical problems upon use. In conclusion, the most suitable 3D printer was selected as the printer in the FDM method, which is comparatively cheap and requires low repair and maintenance cost and low materials expenses, although rather insufficient in the quality of outputs, and a recommendation was made, in addition, to select an entity that is supportive in providing technical support.

How to improve the accuracy of recommendation systems: Combining ratings and review texts sentiment scores (평점과 리뷰 텍스트 감성분석을 결합한 추천시스템 향상 방안 연구)

  • Hyun, Jiyeon;Ryu, Sangyi;Lee, Sang-Yong Tom
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.219-239
    • /
    • 2019
  • As the importance of providing customized services to individuals becomes important, researches on personalized recommendation systems are constantly being carried out. Collaborative filtering is one of the most popular systems in academia and industry. However, there exists limitation in a sense that recommendations were mostly based on quantitative information such as users' ratings, which made the accuracy be lowered. To solve these problems, many studies have been actively attempted to improve the performance of the recommendation system by using other information besides the quantitative information. Good examples are the usages of the sentiment analysis on customer review text data. Nevertheless, the existing research has not directly combined the results of the sentiment analysis and quantitative rating scores in the recommendation system. Therefore, this study aims to reflect the sentiments shown in the reviews into the rating scores. In other words, we propose a new algorithm that can directly convert the user 's own review into the empirically quantitative information and reflect it directly to the recommendation system. To do this, we needed to quantify users' reviews, which were originally qualitative information. In this study, sentiment score was calculated through sentiment analysis technique of text mining. The data was targeted for movie review. Based on the data, a domain specific sentiment dictionary is constructed for the movie reviews. Regression analysis was used as a method to construct sentiment dictionary. Each positive / negative dictionary was constructed using Lasso regression, Ridge regression, and ElasticNet methods. Based on this constructed sentiment dictionary, the accuracy was verified through confusion matrix. The accuracy of the Lasso based dictionary was 70%, the accuracy of the Ridge based dictionary was 79%, and that of the ElasticNet (${\alpha}=0.3$) was 83%. Therefore, in this study, the sentiment score of the review is calculated based on the dictionary of the ElasticNet method. It was combined with a rating to create a new rating. In this paper, we show that the collaborative filtering that reflects sentiment scores of user review is superior to the traditional method that only considers the existing rating. In order to show that the proposed algorithm is based on memory-based user collaboration filtering, item-based collaborative filtering and model based matrix factorization SVD, and SVD ++. Based on the above algorithm, the mean absolute error (MAE) and the root mean square error (RMSE) are calculated to evaluate the recommendation system with a score that combines sentiment scores with a system that only considers scores. When the evaluation index was MAE, it was improved by 0.059 for UBCF, 0.0862 for IBCF, 0.1012 for SVD and 0.188 for SVD ++. When the evaluation index is RMSE, UBCF is 0.0431, IBCF is 0.0882, SVD is 0.1103, and SVD ++ is 0.1756. As a result, it can be seen that the prediction performance of the evaluation point reflecting the sentiment score proposed in this paper is superior to that of the conventional evaluation method. In other words, in this paper, it is confirmed that the collaborative filtering that reflects the sentiment score of the user review shows superior accuracy as compared with the conventional type of collaborative filtering that only considers the quantitative score. We then attempted paired t-test validation to ensure that the proposed model was a better approach and concluded that the proposed model is better. In this study, to overcome limitations of previous researches that judge user's sentiment only by quantitative rating score, the review was numerically calculated and a user's opinion was more refined and considered into the recommendation system to improve the accuracy. The findings of this study have managerial implications to recommendation system developers who need to consider both quantitative information and qualitative information it is expect. The way of constructing the combined system in this paper might be directly used by the developers.

A Comparative Study on the Acceptability and the Consumption Attitude for Soy Foods between Korean and Canadian University Students (한국과 캐나다 대학생들의 콩가공식품에 대한 수응도 및 소비실태 비교 연구)

  • Ahn Tae-Hyun;Paliyath Gopinadhan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.466-476
    • /
    • 2006
  • The objective of this study was to compare and analyze the acceptability and consumption attitude for soy foods between Korean and Canadian university students as young consumers. This survey was carried out by questionnaire and the subjects were n=516 in Korea and n=502 in Canada. Opinions for soy foods in terms of general knowledge were that soy foods are healthy (86.5% in Korean and 53.4% in Canadian) or neutral (11.6% in Korean and 42.8% in Canadian), dairy foods can be substituted by soy foods (51.9% in Korean and 41.8% in Canadian), and soy foods are not only for vegetarians and milk allergy Patients but also for ordinary People (94.2% in Korean and 87.6% in Canadian). In main sources of information about soy foods, the rate by commercials on TV, radio or magazine was the highest (58.0%) for Korean students and the rate by family or friend was the highest(35.7%) for Canadian students. In consumption attitude, all of Korean students have purchased soy foods but only 55.4% of Canadian students have purchased soy foods, and soymilk was remarkably recognized and consumed then soy beverage and margarine in order. 76.4% of Korean students and 65.1% of Canadian students think soy foods are general and popular and can purchase easily, otherwise, in terms of price, soy foods were expensively recognized as 'more expensive than dairy foods' was 59.1% (Korean) and 54.7% (Canadian), and 'similar to dairy foods' was 36.8% (Korean) and 39.9% (Canadian). Major reasons for the rare consumption were 'I am not interested in soy foods' in Korean students (27.3%) and 'I prefer dairy foods to soy foods' in Canadian students (51.7%). However, consumption of soy foods in both countries are very positive and it will be increased.

Matching Points Filtering Applied Panorama Image Processing Using SURF and RANSAC Algorithm (SURF와 RANSAC 알고리즘을 이용한 대응점 필터링 적용 파노라마 이미지 처리)

  • Kim, Jeongho;Kim, Daewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.144-159
    • /
    • 2014
  • Techniques for making a single panoramic image using multiple pictures are widely studied in many areas such as computer vision, computer graphics, etc. The panorama image can be applied to various fields like virtual reality, robot vision areas which require wide-angled shots as an useful way to overcome the limitations such as picture-angle, resolutions, and internal informations of an image taken from a single camera. It is so much meaningful in a point that a panoramic image usually provides better immersion feeling than a plain image. Although there are many ways to build a panoramic image, most of them are using the way of extracting feature points and matching points of each images for making a single panoramic image. In addition, those methods use the RANSAC(RANdom SAmple Consensus) algorithm with matching points and the Homography matrix to transform the image. The SURF(Speeded Up Robust Features) algorithm which is used in this paper to extract featuring points uses an image's black and white informations and local spatial informations. The SURF is widely being used since it is very much robust at detecting image's size, view-point changes, and additionally, faster than the SIFT(Scale Invariant Features Transform) algorithm. The SURF has a shortcoming of making an error which results in decreasing the RANSAC algorithm's performance speed when extracting image's feature points. As a result, this may increase the CPU usage occupation rate. The error of detecting matching points may role as a critical reason for disqualifying panoramic image's accuracy and lucidity. In this paper, in order to minimize errors of extracting matching points, we used $3{\times}3$ region's RGB pixel values around the matching points' coordinates to perform intermediate filtering process for removing wrong matching points. We have also presented analysis and evaluation results relating to enhanced working speed for producing a panorama image, CPU usage rate, extracted matching points' decreasing rate and accuracy.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

Scalable Collaborative Filtering Technique based on Adaptive Clustering (적응형 군집화 기반 확장 용이한 협업 필터링 기법)

  • Lee, O-Joun;Hong, Min-Sung;Lee, Won-Jin;Lee, Jae-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.73-92
    • /
    • 2014
  • An Adaptive Clustering-based Collaborative Filtering Technique was proposed to solve the fundamental problems of collaborative filtering, such as cold-start problems, scalability problems and data sparsity problems. Previous collaborative filtering techniques were carried out according to the recommendations based on the predicted preference of the user to a particular item using a similar item subset and a similar user subset composed based on the preference of users to items. For this reason, if the density of the user preference matrix is low, the reliability of the recommendation system will decrease rapidly. Therefore, the difficulty of creating a similar item subset and similar user subset will be increased. In addition, as the scale of service increases, the time needed to create a similar item subset and similar user subset increases geometrically, and the response time of the recommendation system is then increased. To solve these problems, this paper suggests a collaborative filtering technique that adapts a condition actively to the model and adopts the concepts of a context-based filtering technique. This technique consists of four major methodologies. First, items are made, the users are clustered according their feature vectors, and an inter-cluster preference between each item cluster and user cluster is then assumed. According to this method, the run-time for creating a similar item subset or user subset can be economized, the reliability of a recommendation system can be made higher than that using only the user preference information for creating a similar item subset or similar user subset, and the cold start problem can be partially solved. Second, recommendations are made using the prior composed item and user clusters and inter-cluster preference between each item cluster and user cluster. In this phase, a list of items is made for users by examining the item clusters in the order of the size of the inter-cluster preference of the user cluster, in which the user belongs, and selecting and ranking the items according to the predicted or recorded user preference information. Using this method, the creation of a recommendation model phase bears the highest load of the recommendation system, and it minimizes the load of the recommendation system in run-time. Therefore, the scalability problem and large scale recommendation system can be performed with collaborative filtering, which is highly reliable. Third, the missing user preference information is predicted using the item and user clusters. Using this method, the problem caused by the low density of the user preference matrix can be mitigated. Existing studies on this used an item-based prediction or user-based prediction. In this paper, Hao Ji's idea, which uses both an item-based prediction and user-based prediction, was improved. The reliability of the recommendation service can be improved by combining the predictive values of both techniques by applying the condition of the recommendation model. By predicting the user preference based on the item or user clusters, the time required to predict the user preference can be reduced, and missing user preference in run-time can be predicted. Fourth, the item and user feature vector can be made to learn the following input of the user feedback. This phase applied normalized user feedback to the item and user feature vector. This method can mitigate the problems caused by the use of the concepts of context-based filtering, such as the item and user feature vector based on the user profile and item properties. The problems with using the item and user feature vector are due to the limitation of quantifying the qualitative features of the items and users. Therefore, the elements of the user and item feature vectors are made to match one to one, and if user feedback to a particular item is obtained, it will be applied to the feature vector using the opposite one. Verification of this method was accomplished by comparing the performance with existing hybrid filtering techniques. Two methods were used for verification: MAE(Mean Absolute Error) and response time. Using MAE, this technique was confirmed to improve the reliability of the recommendation system. Using the response time, this technique was found to be suitable for a large scaled recommendation system. This paper suggested an Adaptive Clustering-based Collaborative Filtering Technique with high reliability and low time complexity, but it had some limitations. This technique focused on reducing the time complexity. Hence, an improvement in reliability was not expected. The next topic will be to improve this technique by rule-based filtering.