• Title/Summary/Keyword: 성능정보 제공

Search Result 4,896, Processing Time 0.035 seconds

A Study on Creation of Secure Storage Area and Access Control to Protect Data from Unspecified Threats (불특정 위협으로부터 데이터를 보호하기 위한 보안 저장 영역의 생성 및 접근 제어에 관한 연구)

  • Kim, Seungyong;Hwang, Incheol;Kim, Dongsik
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.897-903
    • /
    • 2021
  • Purpose: Recently, ransomware damage that encrypts victim's data through hacking and demands money in exchange for releasing it is increasing domestically and internationally. Accordingly, research and development on various response technologies and solutions are in progress. Method: A secure storage area and a general storage area were created in the same virtual environment, and the sample data was saved by registering the access process. In order to check whether the stored sample data is infringed, the ransomware sample was executed and the hash function of the sample data was checked to see if it was infringed. The access control performance checked whether the sample data was accessed through the same name and storage location as the registered access process. Result: As a result of the experiment, the sample data in the secure storage area maintained data integrity from ransomware and unauthorized processes. Conclusion: Through this study, the creation of a secure storage area and the whitelist-based access control method are evaluated as suitable as a method to protect important data, and it is possible to provide a more secure computing environment through future technology scalability and convergence with existing solutions.

BIM Energy Efficiency Plan for Verification of Building Envelop Energy Code of Housing in USA - Based on the NYC Energy Conservation Code - (미국 공동주택의 건물 외피 에너지코드 검증을 위한 BIM 에너지 계획 방안 -뉴욕시 에너지 코드를 기준으로-)

  • Heo, Jinwoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.313-322
    • /
    • 2022
  • The number of architects who adopt BIM(Building Information Modeling) as the design method are gradually increasing because of its productivity and efficiency. Climate Change and Global Warming lead to legislation of new energy regulations and strengthen existing ones. The current architectural design methods (2D CAD) take a lot of time and effort to verify energy codes and are hard to adjust according to the design changes. The purpose of this study is to show the effectiveness of the BIM in building envelop energy modeling of the housing project. In the process of design method change, We could contribute to increasing productivity and efficiency in building energy verification through BIM because the updated value could be calculated simultaneously without information omission or recalculation process. The procedure for the study is as follows. Using BIM of the Goldin at Essex Crosing Housing Project by Revit 2011 as a case model, this study analyze the criteria for energy plan to conform to the energy code in NYC. The result value from the setting of the Revit model is compared with the reference value required by the NYC Energy Code. Finally, the data from BIM are entered into COMckeck, the energy verification program provided by U.S. Department of Energy, to check whether the building envelope energy performance conforms to NYC Energy Code.

Detection of Urban Trees Using YOLOv5 from Aerial Images (항공영상으로부터 YOLOv5를 이용한 도심수목 탐지)

  • Park, Che-Won;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1633-1641
    • /
    • 2022
  • Urban population concentration and indiscriminate development are causing various environmental problems such as air pollution and heat island phenomena, and causing human resources to deteriorate the damage caused by natural disasters. Urban trees have been proposed as a solution to these urban problems, and actually play an important role, such as providing environmental improvement functions. Accordingly, quantitative measurement and analysis of individual trees in urban trees are required to understand the effect of trees on the urban environment. However, the complexity and diversity of urban trees have a problem of lowering the accuracy of single tree detection. Therefore, we conducted a study to effectively detect trees in Dongjak-gu using high-resolution aerial images that enable effective detection of tree objects and You Only Look Once Version 5 (YOLOv5), which showed excellent performance in object detection. Labeling guidelines for the construction of tree AI learning datasets were generated, and box annotation was performed on Dongjak-gu trees based on this. We tested various scale YOLOv5 models from the constructed dataset and adopted the optimal model to perform more efficient urban tree detection, resulting in significant results of mean Average Precision (mAP) 0.663.

Analysis of public opinion in the 20th presidential election using YouTube data (유튜브 데이터를 활용한 20대 대선 여론분석)

  • Kang, Eunkyung;Yang, Seonuk;Kwon, Jiyoon;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.161-183
    • /
    • 2022
  • Opinion polls have become a powerful means for election campaigns and one of the most important subjects in the media in that they predict the actual election results and influence people's voting behavior. However, the more active the polls, the more often they fail to properly reflect the voters' minds in measuring the effectiveness of election campaigns, such as repeatedly conducting polls on the likelihood of winning or support rather than verifying the pledges and policies of candidates. Even if the poor predictions of the election results of the polls have undermined the authority of the press, people cannot easily let go of their interest in polls because there is no clear alternative to answer the instinctive question of which candidate will ultimately win. In this regard, we attempt to retrospectively grasp public opinion on the 20th presidential election by applying the 'YouTube Analysis' function of Sometrend, which provides an environment for discovering insights through online big data. Through this study, it is confirmed that a result close to the actual public opinion (or opinion poll results) can be easily derived with simple YouTube data results, and a high-performance public opinion prediction model can be built.

2D Interpolation of 3D Points using Video-based Point Cloud Compression (비디오 기반 포인트 클라우드 압축을 사용한 3차원 포인트의 2차원 보간 방안)

  • Hwang, Yonghae;Kim, Junsik;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.692-703
    • /
    • 2021
  • Recently, with the development of computer graphics technology, research on technology for expressing real objects as more realistic virtual graphics is being actively conducted. Point cloud is a technology that uses numerous points, including 2D spatial coordinates and color information, to represent 3D objects, and they require huge data storage and high-performance computing devices to provide various services. Video-based Point Cloud Compression (V-PCC) technology is currently being studied by the international standard organization MPEG, which is a projection based method that projects point cloud into 2D plane, and then compresses them using 2D video codecs. V-PCC technology compresses point cloud objects using 2D images such as Occupancy map, Geometry image, Attribute image, and other auxiliary information that includes the relationship between 2D plane and 3D space. When increasing the density of point cloud or expanding an object, 3D calculation is generally used, but there are limitations in that the calculation method is complicated, requires a lot of time, and it is difficult to determine the correct location of a new point. This paper proposes a method to generate additional points at more accurate locations with less computation by applying 2D interpolation to the image on which the point cloud is projected, in the V-PCC technology.

EC-RPL to Enhance Node Connectivity in Low-Power and Lossy Networks (저전력 손실 네트워크에서 노드 연결성 향상을 위한 EC-RPL)

  • Jeadam, Jung;Seokwon, Hong;Youngsoo, Kim;Seong-eun, Yoo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.41-49
    • /
    • 2022
  • The Internet Engineering Task Force (IETF) has standardized RPL (IPv6 Routing Protocol for Low-power Lossy Network) as a routing protocol for Low Power and Lossy Networks (LLNs), a low power loss network environment. RPL creates a route through an Objective Function (OF) suitable for the service required by LLNs and builds a Destination Oriented Directed Acyclic Graph (DODAG). Existing studies check the residual energy of each node and select a parent with the highest residual energy to build a DODAG, but the energy exhaustion of the parent can not avoid the network disconnection of the children nodes. Therefore, this paper proposes EC-RPL (Enhanced Connectivity-RPL), in which ta node leaves DODAG in advance when the remaining energy of the node falls below the specified energy threshold. The proposed protocol is implemented in Contiki, an open-source IoT operating system, and its performance is evaluated in Cooja simulator, and the number of control messages is compared using Foren6. Experimental results show that EC-RPL has 6.9% lower latency and 5.8% fewer control messages than the existing RPL, and the packet delivery rate is 1.7% higher.

A Study on the Design and Implementation of a Thermal Imaging Temperature Screening System for Monitoring the Risk of Infectious Diseases in Enclosed Indoor Spaces (밀폐공간 내 감염병 위험도 모니터링을 위한 열화상 온도 스크리닝 시스템 설계 및 구현에 대한 연구)

  • Jae-Young, Jung;You-Jin, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Respiratory infections such as COVID-19 mainly occur within enclosed spaces. The presence or absence of abnormal symptoms of respiratory infectious diseases is judged through initial symptoms such as fever, cough, sneezing and difficulty breathing, and constant monitoring of these early symptoms is required. In this paper, image matching correction was performed for the RGB camera module and the thermal imaging camera module, and the temperature of the thermal imaging camera module for the measurement environment was calibrated using a blackbody. To detection the target recommended by the standard, a deep learning-based object recognition algorithm and the inner canthus recognition model were developed, and the model accuracy was derived by applying a dataset of 100 experimenters. Also, the error according to the measured distance was corrected through the object distance measurement using the Lidar module and the linear regression correction module. To measure the performance of the proposed model, an experimental environment consisting of a motor stage, an infrared thermography temperature screening system and a blackbody was established, and the error accuracy within 0.28℃ was shown as a result of temperature measurement according to a variable distance between 1m and 3.5 m.

Intelligent Motion Pattern Recognition Algorithm for Abnormal Behavior Detections in Unmanned Stores (무인 점포 사용자 이상행동을 탐지하기 위한 지능형 모션 패턴 인식 알고리즘)

  • Young-june Choi;Ji-young Na;Jun-ho Ahn
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.73-80
    • /
    • 2023
  • The recent steep increase in the minimum hourly wage has increased the burden of labor costs, and the share of unmanned stores is increasing in the aftermath of COVID-19. As a result, theft crimes targeting unmanned stores are also increasing, and the "Just Walk Out" system is introduced to prevent such thefts, and LiDAR sensors, weight sensors, etc. are used or manually checked through continuous CCTV monitoring. However, the more expensive sensors are used, the higher the initial cost of operating the store and the higher the cost in many ways, and CCTV verification is difficult for managers to monitor around the clock and is limited in use. In this paper, we would like to propose an AI image processing fusion algorithm that can solve these sensors or human-dependent parts and detect customers who perform abnormal behaviors such as theft at low costs that can be used in unmanned stores and provide cloud-based notifications. In addition, this paper verifies the accuracy of each algorithm based on behavior pattern data collected from unmanned stores through motion capture using mediapipe, object detection using YOLO, and fusion algorithm and proves the performance of the convergence algorithm through various scenario designs.

Design and Implementation of an Execution-Provenance Based Simulation Data Management Framework for Computational Science Engineering Simulation Platform (계산과학공학 플랫폼을 위한 실행-이력 기반의 시뮬레이션 데이터 관리 프레임워크 설계 및 구현)

  • Ma, Jin;Lee, Sik;Cho, Kum-won;Suh, Young-kyoon
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.77-86
    • /
    • 2018
  • For the past few years, KISTI has been servicing an online simulation execution platform, called EDISON, allowing users to conduct simulations on various scientific applications supplied by diverse computational science and engineering disciplines. Typically, these simulations accompany large-scale computation and accordingly produce a huge volume of output data. One critical issue arising when conducting those simulations on an online platform stems from the fact that a number of users simultaneously submit to the platform their simulation requests (or jobs) with the same (or almost unchanging) input parameters or files, resulting in charging a significant burden on the platform. In other words, the same computing jobs lead to duplicate consumption computing and storage resources at an undesirably fast pace. To overcome excessive resource usage by such identical simulation requests, in this paper we introduce a novel framework, called IceSheet, to efficiently manage simulation data based on execution metadata, that is, provenance. The IceSheet framework captures and stores each provenance associated with a conducted simulation. The collected provenance records are utilized for not only inspecting duplicate simulation requests but also performing search on existing simulation results via an open-source search engine, ElasticSearch. In particular, this paper elaborates on the core components in the IceSheet framework to support the search and reuse on the stored simulation results. We implemented as prototype the proposed framework using the engine in conjunction with the online simulation execution platform. Our evaluation of the framework was performed on the real simulation execution-provenance records collected on the platform. Once the prototyped IceSheet framework fully functions with the platform, users can quickly search for past parameter values entered into desired simulation software and receive existing results on the same input parameter values on the software if any. Therefore, we expect that the proposed framework contributes to eliminating duplicate resource consumption and significantly reducing execution time on the same requests as previously-executed simulations.

(A Scalable Multipoint-to-Multipoint Routing Protocol in Ad-Hoc Networks) (애드-혹 네트워크에서의 확장성 있는 다중점 대 다중점 라우팅 프로토콜)

  • 강현정;이미정
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.329-342
    • /
    • 2003
  • Most of the existing multicast routing protocols for ad-hoc networks do not take into account the efficiency of the protocol for the cases when there are large number of sources in the multicast group, resulting in either large overhead or poor data delivery ratio when the number of sources is large. In this paper, we propose a multicast routing protocol for ad-hoc networks, which particularly considers the scalability of the protocol in terms of the number of sources in the multicast groups. The proposed protocol designates a set of sources as the core sources. Each core source is a root of each tree that reaches all the destinations of the multicast group. The union of these trees constitutes the data delivery mesh, and each of the non-core sources finds the nearest core source in order to delegate its data delivery. For the efficient operation of the proposed protocol, it is important to have an appropriate number of core sources. Having too many of the core sources incurs excessive control and data packet overhead, whereas having too little of them results in a vulnerable and overloaded data delivery mesh. The data delivery mesh is optimally reconfigured through the periodic control message flooding from the core sources, whereas the connectivity of the mesh is maintained by a persistent local mesh recovery mechanism. The simulation results show that the proposed protocol achieves an efficient multicast communication with high data delivery ratio and low communication overhead compared with the other existing multicast routing protocols when there are multiple sources in the multicast group.