• Title/Summary/Keyword: 성능시험 기준

Search Result 1,040, Processing Time 0.026 seconds

Development and Assessment of Crashworthy Composite Subfloor for Rotorcrafts (회전익 항공기용 복합재 내추락 하부동체 구조 개발 및 검증)

  • Park, Ill Kyung;Lim, Joo Sup;Kim, Sung Joon;Kim, Tae-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.18-31
    • /
    • 2018
  • Rotorcrafts have more severe crashworthiness conditions than fixed wing aircraft owing to VTOL and hovering. Recently, with the increasing demand for highly efficient transportation system, application of composite materials to aircraft structures is increasing. However, due to the characteristics of composite materials that are susceptible to impact and crash, demand to prove the crashworthiness of composite structures is also increasing. The purpose of present study is to derive the structural concept of composite subfloor for rotorcrafts and verify it. In order to design a crashworthy composite subfloor, the conceptual design of the testbed helicopter for the demonstration and the derivation of energy absorbing requirement were carried out, and the composite energy absorber was designed and verified. Finally, the testbed for the demonstration of a crashworthy composite structure was fabricated, and performed free drop test. It was confirmed that the test results meet the criteria for ensuring occupant survivability.

Comparison of Standards for a 1ϕ 2 W MCCB and Study on the Evaluation of Heat Resistance Characteristics (1ϕ 2 W MCCB의 기준 비교 및 내열 특성 평가에 관한 연구)

  • Choi, Chung-Seog;Lee, Jae-Hyuk
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.21-28
    • /
    • 2014
  • This study obtained the following results by analyzing the standards related to a $1{\phi}$ 2W MCCB and evaluating its heat resistance characteristics. Since KS C 8321 corresponds to IEC 60947-2 standards, most of the related regulations are similar. The NFPA, which presents the user oriented safety regulations, contains no details about tests or inspections, etc., but it does specify in detail the regulations directly related to safety. It can be seen that KS C 8321 classifies in detail the items about tests and inspections. However, IEC 60947-2 and IEEE C37.51 simplified the test and inspection items or omitted some of them. When applying thermal stress to an MCCB for 6 hours at $180^{\circ}C$ using a heat resistant experimental device, it was found that the actuator lever was transformed and moved in the tripped state. In addition, most of the fixing hanger was melted down, losing their function. When applying thermal stress to the MCCB at $90^{\circ}C$, it showed nothing peculiar, but the fixing hanger was partly deformed at $105^{\circ}C$ and $120^{\circ}C$. It was found that the fixing hanger was deformed and the name plate was discolored at $150^{\circ}C$. It can be seen from the analysis of the internals of the MCCB that the trip bar has been melted away and that the up and down operator has moved up. The experiment performed by applying a withstanding voltage of 6 kV for 60 s showed that all items remained intact. In addition, the evaluation of the insulation performance performed by applying DC 500 V using an insulation-resistance tester showed good insulation performance.

Effect of the Insert Shape on the Improvement of Durability of Bolted Joints Applied to Composite Bogie Frames (복합재 대차프레임의 볼트 체결부 내구성 향상을 위한 인서트 영향에 관한 연구)

  • Kim, JunHwan;Shin, KwangBok;Kim, JungSeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.765-770
    • /
    • 2014
  • This paper describes the study on a method for improving the structural durability of bolted joints applied to a composite bogie frame. In this study, three bolted joints with and without inserts and screw threads were selected for determining the effect of the inserts, using experiment and analysis. The structural performances of the proposed bolted joints were compared and evaluated using the test method prescribed by the ASTM D5961 standard. The results revealed that the bolted joint having an insert shape without the screw thread offered improved durability for application to a composite bogie frame. Furthermore, the structural integrity of the frame comprising the bolted joints was evaluated using finite element analysis according to the JIS E 4207 standard. The Tasi-Wu and Von-Mises failure criteria were used for determining the failure of the composite structure and bolted joints, respectively. A sub-modeling technique was introduced for investigating the performance of the bolted joints in greater detail. The analysis results demonstrated that the Tasi-Wu failure index of the composite structure near the bolted joints was reduced by approximately one-half after applying an insert without the screw thread. This implies that the structural durability of the bolted joints of a composite bogie frame could be improved by using a metal insert without the screw thread.

A Comparative Study of Sea Trials and Production Processes for Propulsion Type Working Boats with a Tuna Purse Seiner (다랑어 선망어선 탑재용 보조 작업선의 추진기 형태 변화에 대한 제작과정 및 해상시운전 비교 연구)

  • Ha, Seoung-Mu;Jang, Ho-Yun;Seo, Hyoung-Seock;Seo, Kwan-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.595-602
    • /
    • 2017
  • In Korea, much research and development have occurred to enhance the technological competitiveness of tuna purse seining fisheries. Due to these efforts, fishing efficiency has been improved with the development of radar, sonar and global positioning systems for fish detection and revisions to the hull forms of tuna purse seiners. However, for skiff boats, net boats and speed boats, which are auxiliary working boats mounted on tuna purse seiners, technology has lagged behind relative to the modernization of the main vessel. In this study, the hull of an existing propeller-based net boat with steel wire net to protect tuna was changed to the hull of a water jet propulsion vehicle to reduce resistance and improve maneuverability. As a result, a prototype of a water jet propulsion option was produced according to the aluminum structure strength standards specified by the Ministry of Oceans and Fisheries, and safety was confirmed by performing a drop test. Moreover, through a sea trial test, an existing net boat was shown to have a speed of 12.0knots and a towing force of 2,545 kgf at 2,500 RPM. The prototype had a speed of 26.7 knots and a towing force of 2,011 kgf at 3,200 RPM, which satisfied the towing capacity standards of auxiliary working boats mounted on tuna purse seiners.

Study on Operating Limits of 5.56mm Rifle Overheat - Focusing on Human Engineering (5.56mm 소총 과열에 의한 운용한계 분석 - 인간공학 중심으로)

  • Lee, Ho-Jun;Choi, Si-Young;Shin, Tae-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.49-56
    • /
    • 2020
  • High temperature heat generated during rifle firing not only degrades the performance of the weapon, but also limits the user's operation. In this study, temperature change of handguard according to firing was measured with reference to Human Engineering criteria and the operability according to material was examined. Accordingly, for the firing test, three types of Korean rifle and one overseas model were selected for each material of handguard, and firing test was conducted using a contact type temperature meter. The test result shows that using a plastic handguard with low thermal conductivity and aluminum handguard with high thermal conductivity enabled the rifles to be operated with bare hands even when firing at more than 100 rounds at low atmospheric temperature. However, when firing more than 60 rounds at over 20℃ atmospheric temperature, aluminum handguard use is limited. When firing quickly over 100 rounds, handguard use is restricted regardless of its fabrication material. To eliminate operational limitations by overheating, it is necessary to eliminate direct contact with skin using gloves, vertical grips, etc. This study examined the operability of rifles in terms of thermal risk, and the resulting study results are expected to be used as basic data for Human Engineering of other rifles and munitions.

A Study on the Eco-Friendly Durable Pre-Painting for Concrete Structure (콘크리트 구조물의 친환경 내구성 도장에 관한 기초 연구)

  • Jo, Byung Wan;Choi, Ji Sun;Lee, Seong Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.110-116
    • /
    • 2013
  • A concrete structure has become bigger and higher because of development of construction technology and a change in construction environment. Also it tends to focus on repairing, reinforcement and exterior in harmony with environment for structure maintenance and performance improvement. The research is about eco friendly durable painting applicable to concrete structure using civil and architecture. it purpose to improve external beauties and durable problems due to flexibility by variation of temperature, adhesion of exterior wall, crack and delamination in existing organic and mineral painting. For those problems, we made a eco friendly pre-paint that is made with preliminary treatment mixture as a highly enriched waterproof agent and adhesive increasing agent in preprocessing mixture. Then we performed an experiment on durability of prevention neutralization of concrete, durability abrasion, hiding power, adhesion, temperature resistance and resistance to chemical attack. The result of an experiment shows that hiding power is over 0.96 in standard test, durability abrasion test got higher value 1mg than water paint 75mg and tensile strength is 6 times higher than standard waterproof specification.

Assessment of Soil Stabilization forthe Reduction of Environmental Risk of Lead-contaminated Soil Near a Smelter Site (제련소 주변 납 오염 현장토양의 위해성 저감을 위한 토양 안정화 평가)

  • Yeo, In-Hong;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.215-224
    • /
    • 2021
  • In this study, to investigate the effect of stabilization of Pb-contaminated soil near a smelter site for the reduction of environmental risk of Pb leaching, commercial stabilizers were amended with the Pb-contaminated soil and evaluated leaching characteristics of Pb in soil by TCLP and SPLP leaching test. Also, performing sequential extraction procedure speciation of Pb in the amended soil was investigated. Limestone, AC-2 (Amron), Metafix (Peroxychem) that possess stabilization performance towards heavy metal in soil and mass production is available were selected as candidates. AC-2 contained a CaCO3 and MgO crystalline phase, while Metafix had a Fe7S8 crystalline phase, according to XRD studies. Pb content in SPLP extract was lower than the South Korean drinking water standard for Pb in groundwater at 4% AC-2 and Metafix treatment soil, and TCLP-based stabilization effectiveness was more than 90%. The findings of the sequential extraction method of soil treated with Metafix revealed that fractions 1 and 2 of Pb, which correspond to relatively high mobility and bioavailable fractions, were lowered, while the residual fraction (fraction 5) was raised. As a consequence, the order of performance for Pb stabilization in polluted soil was Metafix>AC-2>limestone.

Analysis of Applicability of Rapid Hardening Composite Mat to Railway Sites (초속경 복합매트의 철도현장 적용성 분석)

  • Jang, Seong Min;Yoo, Hyun Sang;Oh, Dong Wook;Batchimeg, Banzragchgarav;Jung, Hyuk Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.109-116
    • /
    • 2024
  • The Rapid Hardening Composite Mat (RHCM) is a product that improves the initial strength development speed of conventional Geosynthetic Cementitious Composite Mats (GCCM). It offers the advantage of quickly securing sufficient strength in railway slopes with insufficient formation level, and provides benefits such as preventing slope erosion and inhibiting vegetation growth. In this study, an analysis of the practical applicability of RHCM in railway settings was conducted through experimentation. The on-site applicability was assessed by categorizing it into fire resistance, durability, and stability, and conducting combustibility test, ground contact pressure test, and daily displacement analyses. In the case of South Korea, where a significant portion of the territory is composed of forested areas, the prevention of slope fires is imperative. To analyze the fire resistance of RHCM, combustibility tests were conducted as an essential measure. Durability was assessed through ground contact pressure tests to analyze the deformation and potential damage of RHCM caused by the inevitable use of small to medium-sized equipment on the construction surface. Furthermore, daily displacement analysis was conducted to evaluate the structural stability by comparing and analyzing the displacement and behavior occurring during the application of RHCM with railway slope maintenance criteria. As a result of the experiments, the RHCM was analyzed to meet the criteria for heat release rate and gas toxicity. Furthermore, the ground contact pressure was observed to be consistently above 50 kPa during the curing period of 4 to 24 hours under all conditions. Additionally, the daily displacement analyzed through field site experiments ranged from -1.7 mm to 1.01 mm, confirming compliance with the criteria.

Analysis of the Physical Properties of Ground before and after Low Flowing Grouting (저유동성 그라우팅 시공전후 지반의 물성변화 분석)

  • Seo, Seok-Hyun;Lee, Jung-Sang;Kang, Won-Dong;Jung, Euiyoup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.115-127
    • /
    • 2019
  • The low-flow grouting injection technique, the target construction method for this study, is a method of pouring mortar into the ground by non-emission replacement principle, which can be expected to increase the density of the ground, and, in some cases, be used as a base file using the strength of the high injection solids, along with low noise, low pollution, and high durability. To verify that the dynamic characteristics of the ground are improved by the low-flow injection technique, the test work was conducted on the site and physical tests were performed, and the quality of the improvement formed in the ground was verified through the indoor test on the core and core recovery rate was analyzed. The density logs test layer calculated the volume density of the ground layer by using the Compton scattering of gamma-rays, and the sonic logs was tested on the ground around the drill hole using a detector consisting of sonar and receiver devices inside the drill hole. As a result of the measurement of the change in physical properties (density and sonic logs) before and after grouting, both properties were basically increased after infusion of grout agent. However, the variation in density increase was greater than the increase in speed after grouting, and the ground density measurement method was thought to be effective in measuring the fill effect of the filler. Strength and core recovery rates were measured from specimens taken after the age of 28 days, and the results of the test results of the diffusion and strength test of the improved products were verified to satisfy the design criteria, thereby satisfying the seismic performance reinforcement.

A Study on the Material Characteristics and the Welding Properties of 600MPa Grade Steel (SM 570 TMC) (600MPa급(SM 570 TMC) 강재의 소재 및 용접특성에 관한 연구)

  • Kim, Jong Rak;Kim, Sang Seup;Lee, Chul Ho;Lee, Eun Taik;Beak, Ki Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.773-781
    • /
    • 2008
  • As buildings are becoming taller and longer-spanned, the requirements of high-strength and reliable steels are becoming increasingly stringent. Structural steels, however, acquire significantly different mechanical properties when their strength becomes higher. In this study, the mechanical properties, welding characteristics, and conformities of the 600MPa-grade high-strength steel were tested. The 600MPa-grade steel plates exhibited stable criterion strengthvalues and showed low carbon equivalents (${\mathcal{Ceq}}$) and composition (${\mathcal{Pcm}}$) as well as excellent welding hardness. In the tensile strength test, all the specimens were found to have strengths of over 600MPa. In the Sharphy impact test, the impact-absorbed energy of the V-notch specimens was shown to be 47J at the KS limit. Moreover, the maximum hardness of the specimens in the weld-heat-affected zone at a normal temperature was the same as that before welding. Their weld metal properties, however, were found not to be as good as those of high-strength steel. As such, the details of high-strength steel must be determined.