• Title/Summary/Keyword: 성능모델

Search Result 11,873, Processing Time 0.042 seconds

A study on the development and applicability of fire risk assessment method for small road tunnels passing only small cars (소형차 전용 도로터널의 화재 위험도 평가기법개발 및 적용성에 관한 연구)

  • Ryu, Ji-Oh;Choi, Pan-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.917-930
    • /
    • 2018
  • A quantitative risk assessment method for quantitatively evaluating the fire risk in designing a road tunnel disaster prevention facilities has been introduced to evaluate the appropriateness of a disaster prevention facility in a large tunnel through which all vehicle types pass. However, since the quantitative risk assessment method of the developed can be applied only to the large sectional area tunnels (large tunnels), it is necessary to develop a quantitative risk assessment method for road tunnels passing only small cars which has recently been constructed or planned. In this study, fire accidents scenarios and quantitative risk assesment method for small road tunnels through small cars only which is based on the methods for existing road tunnels (large tunnels). And the risk according to the distance between cross passage is evaluated. As a result, in order to satisfy the societal risk assessment criteria, the distance of the appropriate distance between cross passages was estimated to be 200 m, and the effect of the ventilation system of the large port exhaust ventilation system was quantitatively analyzed by comparing the longitudinal ventilation system.

A Study on the Flow Analysis for KP505 Propeller Open Water Test (유체기기의 표면 금속코팅 적용에 따른 구조건전성 평가)

  • Lee, Han-Seop;Lim, Byung-Chul;Kim, Min-Tae;Lee, Beom-Soon;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.23-28
    • /
    • 2019
  • The structural integrity of a surface metal coating was evaluated through numerical results to improve the efficiency and reduce the damage caused by cavitation in ships and marine plants. The goal was to ensure structural strength and performance, even if the thickness of the wing is reduced to reduce the weight of the material and surface coating. Analytical methods were used for four models: a non-coating model, one with the same thickness after coating, one with a thickness reduction of 3% after coating, and one with thickness reduction of 5% after coating. With a thickness reduction of 5% after coating, the stress was increased to 12%, and the safety factor was 0.99%, so the structural integrity was insufficient. However, a better material or a thicker coating could allow a sufficient safety factor to be secured. The structural integrity was improved by the coating, and even when the weight was reduced up to 5%, the structural integrity could be sufficiently secured due to the coating effect.

A Study on CPPS Architecture integrated with Centralized OPC UA Server (중앙 집중식 OPC UA 서버와 통합 된 CPPS 아키텍처에 관한 연구)

  • Jo, Guejong;Jang, Su-Hwan;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.73-82
    • /
    • 2019
  • In order to build a smart factory, building a CPPS (Cyber Physical Product System) is an important system that must be accompanied. Through the CPPS, it is the reality of smart factories to move physical factories to a digital-based cyber world and to intelligently and autonomously monitor and control them. But The existing CPPS architectures present only an abstract modeling architecture, and the research that applied the OPC UA Framework (Open Platform Communication Unified Architecture), an international standard for data exchange in the smart factory, as the basic system of CPPS It was insufficient. Therefore, it is possible to implement CPPS that can include both cloud and IoT by collecting field data distributed by CPPS architecture applicable to actual factories and concentrating data processing in a centralized In this study, we implemented CPPS architecture through central OPC UA Server based on OPC UA conforming to central processing OPC UA Framework, and how CPPS logical process and data processing process are automatically generated through OPC UA modeling processing We have proposed the CPPS architecture including the model factory and implemented the model factory to study its performance and usability.

Deep learning-based Multilingual Sentimental Analysis using English Review Data (영어 리뷰데이터를 이용한 딥러닝 기반 다국어 감성분석)

  • Sung, Jae-Kyung;Kim, Yung Bok;Kim, Yong-Guk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.9-15
    • /
    • 2019
  • Large global online shopping malls, such as Amazon, offer services in English or in the language of a country when their products are sold. Since many customers purchase products based on the product reviews, the shopping malls actively utilize the sentimental analysis technique in judging preference of each product using the large amount of review data that the customer has written. And the result of such analysis can be used for the marketing to look the potential shoppers. However, it is difficult to apply this English-based semantic analysis system to different languages used around the world. In this study, more than 500,000 data from Amazon fine food reviews was used for training a deep learning based system. First, sentiment analysis evaluation experiments were carried out with three models of English test data. Secondly, the same data was translated into seven languages (Korean, Japanese, Chinese, Vietnamese, French, German and English) and then the similar experiments were done. The result suggests that although the accuracy of the sentimental analysis was 2.77% lower than the average of the seven countries (91.59%) compared to the English (94.35%), it is believed that the results of the experiment can be used for practical applications.

Blockchain Based Financial Portfolio Management Using A3C (A3C를 활용한 블록체인 기반 금융 자산 포트폴리오 관리)

  • Kim, Ju-Bong;Heo, Joo-Seong;Lim, Hyun-Kyo;Kwon, Do-Hyung;Han, Youn-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.1
    • /
    • pp.17-28
    • /
    • 2019
  • In the financial investment management strategy, the distributed investment selecting and combining various financial assets is called portfolio management theory. In recent years, the blockchain based financial assets, such as cryptocurrencies, have been traded on several well-known exchanges, and an efficient portfolio management approach is required in order for investors to steadily raise their return on investment in cryptocurrencies. On the other hand, deep learning has shown remarkable results in various fields, and research on application of deep reinforcement learning algorithm to portfolio management has begun. In this paper, we propose an efficient financial portfolio investment management method based on Asynchronous Advantage Actor-Critic (A3C), which is a representative asynchronous reinforcement learning algorithm. In addition, since the conventional cross-entropy function can not be applied to portfolio management, we propose a proper method where the existing cross-entropy is modified to fit the portfolio investment method. Finally, we compare the proposed A3C model with the existing reinforcement learning based cryptography portfolio investment algorithm, and prove that the performance of the proposed A3C model is better than the existing one.

Seismic Response Analysis of a Two-Mass Rack System Considering Frictional Behavior (마찰거동을 고려한 이중질량시스템의 지진응답해석)

  • Park, Kwan-Soon;Ok, Seung-Yong;Lee, Jeeho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.347-352
    • /
    • 2018
  • This study proposes seismic response analysis technique of a two-mass rack system which sustains heavy loads with frictional behavioral characteristics. In order to deal with the nonlinear frictional characteristics of the mass on the rack system, the equations of motion of the system has been derived and the appropriate numerical simulation technique has been developed. In order to examine the seismic performance of the proposed system, we consider two parameters that are expected to have great influence on the seismic performance of the system. One is the ratio of the two masses of the load and the rack structure, and the other is the friction coefficient between rack and loaded mass. A number of numerical simulations of the seismic response of structures with various natural frequencies for both parameters have been performed in order to investigate the seismic safety of the rack structures. From the simulated results. it is observed that the maximum displacement of the rack system tends to decrease drastically as the natural frequency of the structure increases regardless of the two parameters of mass ratio and friction coefficient. The proposed study provides important reference data to guarantee the seismic safety of the rack system by considering nonlinear frictional behavior of the loaded mass.

Wavelet-based Statistical Noise Detection and Emotion Classification Method for Improving Multimodal Emotion Recognition (멀티모달 감정인식률 향상을 위한 웨이블릿 기반의 통계적 잡음 검출 및 감정분류 방법 연구)

  • Yoon, Jun-Han;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1140-1146
    • /
    • 2018
  • Recently, a methodology for analyzing complex bio-signals using a deep learning model has emerged among studies that recognize human emotions. At this time, the accuracy of emotion classification may be changed depending on the evaluation method and reliability depending on the kind of data to be learned. In the case of biological signals, the reliability of data is determined according to the noise ratio, so that the noise detection method is as important as that. Also, according to the methodology for defining emotions, appropriate emotional evaluation methods will be needed. In this paper, we propose a wavelet -based noise threshold setting algorithm for verifying the reliability of data for multimodal bio-signal data labeled Valence and Arousal and a method for improving the emotion recognition rate by weighting the evaluation data. After extracting the wavelet component of the signal using the wavelet transform, the distortion and kurtosis of the component are obtained, the noise is detected at the threshold calculated by the hampel identifier, and the training data is selected considering the noise ratio of the original signal. In addition, weighting is applied to the overall evaluation of the emotion recognition rate using the euclidean distance from the median value of the Valence-Arousal plane when classifying emotional data. To verify the proposed algorithm, we use ASCERTAIN data set to observe the degree of emotion recognition rate improvement.

Design of Immersive Walking Interaction Using Deep Learning for Virtual Reality Experience Environment of Visually Impaired People (시각 장애인 가상현실 체험 환경을 위한 딥러닝을 활용한 몰입형 보행 상호작용 설계)

  • Oh, Jiseok;Bong, Changyun;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.11-20
    • /
    • 2019
  • In this study, a novel virtual reality (VR) experience environment is proposed for enabling walking adaptation of visually impaired people. The core of proposed VR environment is based on immersive walking interactions and deep learning based braille blocks recognition. To provide a realistic walking experience from the perspective of visually impaired people, a tracker-based walking process is designed for determining the walking state by detecting marching in place, and a controller-based VR white cane is developed that serves as the walking assistance tool for visually impaired people. Additionally, a learning model is developed for conducting comprehensive decision-making by recognizing and responding to braille blocks situated on roads that are followed during the course of directions provided by the VR white cane. Based on the same, a VR application comprising an outdoor urban environment is designed for analyzing the VR walking environment experience. An experimental survey and performance analysis were also conducted for the participants. Obtained results corroborate that the proposed VR walking environment provides a presence of high-level walking experience from the perspective of visually impaired people. Furthermore, the results verify that the proposed learning algorithm and process can recognize braille blocks situated on sidewalks and roadways with high accuracy.

Proposal and Analysis of Primality and Safe Primality test using Sieve of Euler (오일러체를 적용한 소수와 안전소수의 생성법 제안과 분석)

  • Jo, Hosung;Lee, Jiho;Park, Heejin
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.438-447
    • /
    • 2019
  • As the IoT-based hyper-connected society grows, public-key cryptosystem such as RSA is frequently used for encryption, authentication, and digital signature. Public-key cryptosystem use very large (safe) prime numbers to ensure security against malicious attacks. Even though the performance of the device has greatly improved, the generation of a large (safe)prime is time-consuming or memory-intensive. In this paper, we propose ET-MR and ET-MR-MR using Euler sieve so it runs faster while using less memory. We present a running time prediction model by probabilistic analysis and compare time and memory of our method with conventional methods. Experimental results show that the difference between the expected running time and the measured running time is less than 4%. In addition, the fastest running time of ET-MR is 36% faster than that of TD-MR, 8.5% faster than that of DT-MR and the fastest running time of ET-MR-MR is 65.3% faster than that of TD-MR-MR and similar to that of DT-MR-MR. When k=12,381, the memory usage of ET-MR is 2.7 times more than that of DT-MR but 98.5% less than that of TD-MR and when k=65,536, the memory usage of ET-MR-MR is 98.48% less than that of TD-MR-MR and 92.8% less than that of DT-MR-MR.

An Assessment of Applicability of Heat Waves Using Extreme Forecast Index in KMA Climate Prediction System (GloSea5) (기상청 현업 기후예측시스템(GloSea5)에서의 극한예측지수를 이용한 여름철 폭염 예측 성능 평가)

  • Heo, Sol-Ip;Hyun, Yu-Kyung;Ryu, Young;Kang, Hyun-Suk;Lim, Yoon-Jin;Kim, Yoonjae
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.257-267
    • /
    • 2019
  • This study is to assess the applicability of the Extreme Forecast Index (EFI) algorithm of the ECMWF seasonal forecast system to the Global Seasonal Forecasting System version 5 (GloSea5), operational seasonal forecast system of the Korea Meteorological Administration (KMA). The EFI is based on the difference between Cumulative Distribution Function (CDF) curves of the model's climate data and the current ensemble forecast distribution, which is essential to diagnose the predictability in the extreme cases. To investigate its applicability, the experiment was conducted during the heat-wave cases (the year of 1994 and 2003) and compared GloSea5 hindcast data based EFI with anomaly data of ERA-Interim. The data also used to determine quantitative estimates of Probability Of Detection (POD), False Alarm Ratio (FAR), and spatial pattern correlation. The results showed that the area of ERA-Interim indicating above 4-degree temperature corresponded to the area of EFI 0.8 and above. POD showed high ratio (0.7 and 0.9, respectively), when ERA-Interim anomaly data were the highest (on Jul. 11, 1994 (> $5^{\circ}C$) and Aug. 8, 2003 (> $7^{\circ}C$), respectively). The spatial pattern showed a high correlation in the range of 0.5~0.9. However, the correlation decreased as the lead time increased. Furthermore, the case of Korea heat wave in 2018 was conducted using GloSea5 forecast data to validate EFI showed successful prediction for two to three weeks lead time. As a result, the EFI forecasts can be used to predict the probability that an extreme weather event of interest might occur. Overall, we expected these results to be available for extreme weather forecasting.