• Title/Summary/Keyword: 성공

Search Result 15,339, Processing Time 0.041 seconds

The effect of thickness and deflection of orthodontic thermoplastic materials on its mechanical properties (교정용 열가소성 재료의 두께와 변형량이 재료의 물리적 특성에 미치는 영향)

  • Min, Sam;Hwang, Chung-Ju;Yu, Hyung-Seog;Lee, Sang-Bae;Cha, Jung-Yul
    • The korean journal of orthodontics
    • /
    • v.40 no.1
    • /
    • pp.16-26
    • /
    • 2010
  • Objective: The purposes of this study were to evaluate the force and stress depending on the type, deflection and thickness of the materials and to evaluate the mechanical properties of thermoplastic materials after repeated loading. Methods: Four types of thermoplastic products were tested. Force until the deflections of 2.0 mm and the stress when the materials were restoring to its resting position were evaluated. The mechanical properties of thermoplastic materials evaluated after 5 repeated loading cycles. Results: The interaction was observed between the thickness and the deflection (p < 0.05) from the regression equation. Thickness and amount of deflection rather than products and materials showed the largest effect on force and stress. In all products, at least 159 gf of force was required for more than 1.0 mm deflection or when materials with 1.0 mm thickness were deflected. The stress recorded was more than 19 gf/$mm^2$. During repeated loading, each group showed significant difference on the force and the stress (p < 0.01), 10 - 17% reduction of force and 4 - 7% reduction of stress in average. Conclusions: Proper thickness of thermoplastic materials and deflection level of tooth movement should be decided for the physiologic tooth movement. Force decay after repeated loading should be considered for the efficient tooth movement.

Estimation of $CO_2$ saturation from time-lapse $CO_2$ well logging in an onshore aquifer, Nagaoka, Japan (일본 Nagaoka 육상 대수층에서 시간차 $CO_2$ 물리검층으로부터 $CO_2$ 포화도의 추정)

  • Xue, Ziqiu;Tanase, Daiji;Watanabe, Jiro
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.19-29
    • /
    • 2006
  • The first Japanese pilot-scale $CO_2$ sequestration project has been undertaken in an onshore saline aquifer, near Nagaoka in Niigata prefecture, and time-lapse well logs were carried out in observation wells to detect the arrival of injected $CO_2$ and to evaluate $CO_2$ saturation in the reservoir. $CO_2$ was injected into a thin permeable zone at the depth of 1110m at a rate of 20-40 tonnes per day. The total amount of injected $CO_2$ was 10400 tonnes, during the injection period from July 2003 to January 2005. The pilot-scale demonstration allowed an improved understanding of the $CO_2$ movement in a porous sandstone reservoir, by conducting time-lapse geophysical well logs at three observation wells. Comparison between neutron well logging before and after the insertion of fibreglass casing in observation well OB-2 showed good agreement within the target formation, and the higher concentration of shale volume in the reservoir results in a bigger difference between the two well logging results. $CO_2$ breakthrough was identified by induction, sonic, and neutron logs. By sonic logging, we confirmed P-wave velocity reduction that agreed fairly well with a laboratory measurement on drilled core samples from the Nagaoka site. We successfully matched the history changes of sonic P-wave velocity and estimated $CO_2$ saturation a(ter breakthrough in two observation wells out of three. The sonic-velocity history matching result suggested that the sweep efficiency was about 40%. Small effects of $CO_2$ saturation on resistivity resulted in small changes in induction logs when the reservoir was partially saturated. We also found that $CO_2$ saturation in the $CO_2$-bearing zone responded to suspension of $CO_2$ injection.

Synthesis and Characterization of Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticles (Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticle의 합성과 성질에 관한 연구)

  • Yoo, Jeong-Yeol;Lee, Young-Ki;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.397-406
    • /
    • 2015
  • ZnO, II-VI group inorganic compound semi-conductor, has been receiving much attention due to its wide applications in various fields. Since the ZnO has 3.37 eV of a wide band gap and 60 meV of big excitation binding energy, it is well-known material for various uses such the optical property, a semi-conductor, magnetism, antibiosis, photocatalyst, etc. When applied in the field of photocatalyst, many research studies have been actively conducted regarding magnetic materials and the core-shell structure to take on the need of recycling used materials. In this paper, magnetic core-shell ZnFe2O4@SiO2 nanoparticles (NPs) have been successfully synthesized through three steps. In order to analyze the structural characteristics of the synthesized substances, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR) were used. The spinel structure of ZnFe2O4 and the wurtzite structure of ZnO were confirmed by XRD, and ZnO production rate was confirmed through the analysis of different concentrations of the precursors. The surface change of the synthesized materials was confirmed by SEM. The formation of SiO2 layer and the synthesis of ZnFe2O4@ZnO@SiO2 NPs were finally verified through the bond of Fe-O, Zn-O and Si-O-Si by FT-IR. The magnetic property of the synthesized materials was analyzed through the vibrating sample magnetometer (VSM). The increase and decrease in the magnetism were respectively confirmed by the results of the formed ZnO and SiO2 layer. The photocatalysis effect of the synthesized ZnFe2O4 @ZnO@SiO2 NPs was experimented in a black box (dark room) using methylene blue (MB) under UV irradiation.

Clinical Implementation of an Eye Fixing and Monitoring System with Head Mount Display (Head Mount Display (HMD)를 이용한 안구의 고정 및 감시장치의 임상사용 가능성 확인)

  • Ko, Young-Eun;Park, Seoung-HO;Yi, Byong-Yong;Ahn, Seung-Do;Lim, Sang-Wook;Lee, Sang-Wook;Shin, Seong-Soo;Kim, Jong-Hoon;Choi, Eun-Kyung;Noh, Young-Ju
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • A system to non-invasively fix and monitor eye by a head mounted display (HMD) with a CCD camera for stereotactic radiotherapy (SRS) of uveal melanoma has been developed and implemented clinically. The eye fixing and monitoring system consists of a HMD showing patient a screen for fixing eyeball, a CCD camera monitoring patient's eyeball, and an immobilization mask. At flrst, patient's head was immobilized with a mask. Then, patient was Instructed to wear HMD, to which CCD camera was attached, on the mask and see the given reference point on its screen. While patient stared at the given point in order to fix eyeball, the camera monitored Its motion. Four volunteers and one patient of uveal melanoma for SRS came into this study. For the volunteers, setup errors and the motion of eyeball were analyzed. For the patient, CT scans were peformed, with patient's wearing HMD and fixing the eye to the given point. To treat patient under the same condition, daily CT scans were also peformed before every treatment and the motion of lens was compared to the planning CT Setup errors for four volunteers were within 1mm and the motion of eyeball was fixed within the clinically acceptable ranges. For the patient with uveal melanoma, the motion of lens was fixed within 2mm from daily CT scans. An eye fixing and monitoring system allowed Immobilizing patient as well as monitoring eyeball and was successfully implemented in the treatment of uveal melanoma for SRS.

  • PDF

Electrical Stimulation Parameters in Normal and Degenerate Rabbit Retina (정상 망막과 변성 망막을 위한 전기자극 파라미터)

  • Jin, Gye-Hwan;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • Retinal prosthesis is regarded as the most feasible method for the blind caused by retinal diseases such as retinitis pigmentosa (RP) or age related macular degeneration (AMD). Recently Korean consortium launched for developing retinal prosthesis. One of the prerequisites for the success of retinal prosthesis is the optimization of the electrical stimuli applied through the prosthesis. Since electrical characteristics of degenerate retina are expected to differ from those of normal retina, we performed voltage stimulation experiment both in normal and degenerate retina to provide a guideline for the optimization of electrical stimulation for the upcoming prosthesis. After isolation of retina, retinal patch was attached with the ganglion cell side facing the surface of microelectrode arrays (MEA). $8{\times}8$ grid layout MEA (electrode diameter: $30{\mu}m$, electrode spacing: $200{\mu}m$, and impedance: $50k{\Omega}$ at 1 kHz) was used to record in-vitro retinal ganglion cell activity. Mono-polar electrical stimulation was applied through one of the 60 MEA channel, and the remaining channels were used for recording. The electrical stimulus was a constant voltage, charge-balanced biphasic, anodic-first square wave pulse without interphase delay, and 50 trains of pulse was applied with a period of 2 sec. Different electrical stimuli were applied. First, pulse amplitude was varied (voltage: $0.5{\sim}3.0V$). Second, pulse duration was varied $(100{\sim}1,200{\mu}s)$. Evoked responses were analyzed by PSTH from averaged data with 50 trials. Charge density was calculated with Ohm's and Coulomb's law. In normal retina, by varying the pulse amplitude from 0.5 to 3V with fixed duration of $500{\mu}s$, the threshold level for reliable ganglion cell response was found at 1.5V. The calculated threshold of charge density was $2.123mC/cm^2$. By varying the pulse duration from 100 to $1,200{\mu}s$ with fixed amplitude of 2V, the threshold level was found at $300{\mu}s$. The calculated threhold of charge density was $1.698mC/cm^2$. Even after the block of ON-pathway with L-(1)-2-amino-4-phosphonobutyric acid (APB), electrical stimulus evoked ganglion cell activities. In this APB-induced degenerate retina, by varying the pulse duration from 100 to $1200{\mu}s$ with fixed voltage of 2 V, the threshold level was found at $300{\mu}s$, which is the same with normal retina. More experiment with APB-induced degenerate retina is needed to make a clear comparison of threshold of charge density between normal and degenerate retina.

  • PDF

Comparison of Retinal Waveform between Normal and rd/rd Mouse (정상 마우스와 rd/rd 마우스의 망막파형 비교)

  • Ye, Jang-Hee;Seo, Je-Hoon;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.157-163
    • /
    • 2008
  • Retinal prosthesis is regarded as the most feasible method for the blind caused by retinal diseases such as retinitis pigmentosa or age-related macular degeneration. One of the prerequisites for the success of retinal prosthesis is the optimization of the electrical stimuli applied through the prosthesis. Since electrical characteristics of degenerate retina are expected to differ from those of normal retina, we investigated differences of the retinal waveforms in normal and degenerate retina to provide a guideline for the optimization of electrical stimulation for the upcoming prosthesis. After isolation of retina, retinal patch was attached with the ganglion cell side facing the surface of microelectrode arrays (MEA). $8{\times}8$ grid layout MEA (electrode diameter: $30{\mu}m$, electrode spacing: $200{\mu}m$, and impedance: 50 $k{\Omega}$ at 1 kHz) was used to record in-vitro retinal ganglion cell activity. In normal mice (C57BL/6J strain) of postnatal day 28, only short duration (<2 ms) retinal spikes were recorded. In rd/rd mice (C3H/HeJ strain), besides normal spikes, waveform with longer duration (~100 ms), the slow wave component was recorded. We attempted to understand the mechanism of this slow wave component in degenerate retina using various synaptic blockers. We suggest that stronger glutamatergic input from bipolar cell to the ganglion cell in rd/rd mouse than normal mouse contributes the most to this slow wave component. Out of many degenerative changes, we favor elimination of the inhibitory horizontal input to bipolar cells as a main contributor for a relatively stronger input from bipolar cell to ganglion cell in rd/rd mouse.

  • PDF

Temperature Compensation of Optical FBG Sensors Embedded Tendon for Long-term Monitoring of Tension Force of Ground Anchor (광섬유 센서 내장형 텐던을 이용한 그라운드 앵커의 장기 장력모니터링을 위한 온도보상)

  • Sung, Hyun-Jong;Kim, Young-Sang;Kim, Jae-Min;Park, Gui-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.13-25
    • /
    • 2012
  • Ground anchor method is one of the most popular reinforcing technology for slope in Korea. For the health monitoring of slope which is reinforced by permanent anchor for a long period, monitoring of the tension force of ground anchor is very important. However, since electromechanical sensors such as strain gauge and V/W type load cell are also subject to long-term risk as well as suffering from noise during long distance transmission and immunity to electromagnetic interference (EMI), optical FBG sensors embedded tendon was developed to measure strain of 7-wire strand by embedding FBG sensor into the center king cable of 7-wire strand. This FBG sensors embedded tendon has been successfully applied to measuring the short-term anchor force. But to adopt this tendon to long-term monitoring, temperature compensation of the FBG sensors embedded tendon should be done. In this paper, we described how to compensate the effect in compliance with the change of underground temperature during long-term tension force monitoring of ground anchors by using optical fiber sensors (FBG: Fiber Bragg Grating). The model test was carried out to determine the temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon. The determined temperature sensitivity coefficient ${\beta}^{\prime}=2.0{\times}10^{-5}/^{\circ}C$ was verified by comparing the ground temperatures predicted from the proposed sensor using ${\beta}^{\prime}$ with ground temperatures measured from ground thermometer. Finally, temperature compensations were carried out based on ${\beta}^{\prime}$ value and ground temperature measurement from KMA for the tension force monitoring results of tension type and compression type anchors, which had been installed more than 1 year before at the test site. Temperature compensated tension forces are compared with those measured from conventional load cell during the same measuring time. Test results show that determined temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon is valid and proposed temperature compensation method is also appropriate from the fact that the temperature compensated tension forces are not dependent on the change of ground temperature and are consistent with the tension forces measured from the conventional load cell.

Beliefs About Gifted Education and Classroom Practices of the Science Teachers at Science Academy in Korea (과학영재학교 과학교사들의 영재교육에 대한 신념과 교수활동 유형)

  • Kim, Kyung-Jin;Kwon, Byung-Doo;Kim, Chan-Jong;Choe, Seung-Um
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.4
    • /
    • pp.514-525
    • /
    • 2005
  • The most important factor in providing education to gifted students as well as to students in general are the teachers themselves. However, at present in Korea, most of the teachers in charge of education for the gifted are educated by in-service training programs only for a short period of time. It is doubtful whether the teachers, who have taught ordinary students in general, can teach gifted students effectively only after completing such a short course. This research investigated the relationship between the teachers' beliefs about educating the gifted and the teachers' classroom practices in a Science Academy through case studies. The guiding questions for this study are as follows: First, what beliefs do the participating teachers have about education for the gifted? Second, how are the participants' beliefs reflected in their classroom practices? Of the five participants, two are physics teachers, two are biology teachers, and one is an earth science teacher. I observed and videotaped four classroom practices for each participant and conducted an in-depth interview with each participant. Further data were collected through e-mails with the participants. All data were carefully transcribed and analyzed. The results are as follows: Beliefs about education for the gifted do not exist independently, and form a belief system connecting with beliefs about teaching and learning, and subject matter. And the belief systems of participants can be divided into "student-centered," "teacher-centered," and "conflict chaos." In the classes of the participants who have "student-centered" belief system, students' questions or opinions played an important role and the participation structure in the classroom was determined by the students. On the contrary, participants who have "teacher-centered" belief system focused on teaching contents as much as possible in their classes. These teachers played a heavy role and formed a participation structure where students depended on their teacher's intellectual authority and therefore participated in their class passively. A participant who have "conflict chaos" belief did not form a firm belief system yet, and traditional beliefs about teaching and learning were reflected a lot in her classes. The research results imply teachers' beliefs play an important role in classroom practices and beliefs about teaching and learning and subject matter as well as beliefs about education for the gifted are important factors for teachers who guide gifted students. Additionally, I make some suggestions for the improvement of teacher education for the gifted.

Evaluation on the Implementation of Girl Friendly Science Activity (여학생 친화적 과학활동 프로그램의 운영 평가)

  • Jhun, Young-Seok;Shin, Young-Joon
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.3
    • /
    • pp.442-458
    • /
    • 2004
  • This study was conducted to develop a plan for a large-scale implementation of the Girl Friendly Science Program based on the results of analysis and investigation of its current pilot implementation, Girl Friendly Science Program materials, which was first developed in 1999 with the support from Ministry of Gender Equality, consist of 1) five theme-based units that are specifically targeted individual students' unique ability, aptitude, and career choice, and 2) differentiated learning materials for 7th through 10th grade female students. All the materials are available at the homepage (http://tes.or.kr/gfsp.cgi) of 'Teachers for Exciting Science(the organization of science teachers in Seoul area)'. Since the materials are well organized by topic and grade level and presented in both Korean word process document and html format, anyone can easily access to the materials for their own instructional use. Ever since its launch the number of visitors to the homepage has been constantly increasing. The evaluation results of the current pilot implementation of the materials that targeted individual students' ability and aptitude showed that it scored high in terms of its alignment to the original purpose, content, level, and effectiveness to implement in classrooms. However, its evaluation scores were low in terms of the convenience for teachers to guide the materials, and its organization and operation. The results also showed a significant change in students' perception of science, and students' positive experiences of science through various interdisciplinary activities. On the other hand, the evaluation of students' experiences with the materials showed that students' assessment about an activity was largely depending on a success or failure of their experiences. Overall, students' evaluation of activities scores were low for simple activities such as cutting off or pasting papers. According to students' achievement test results, differences between pre and post test scores in the Affective Domain was statistically significant (p<0.05), but not in Inquiry Domain. Based on teachers observations, numerous schools where have run this program reported that students' abilities to cooperate, discuss, observe and reason with evidences were improved. In order to implement this program in a larger scale, it is critical to have a strong support of teachers and induce them to change their teaching strategy through building a community of teachers and developing ongoing teacher professional development programs. Finally, there still remain strong needs to develop more programs, and actively discover and train more domestic woman scientists and engineers and collaborate with them to develop more educational materials for girls in all ages.

A Decade of Comparative Study on the Changes in Elementary and Secondary School Science Teachers' Professionalism and Perceptions of Integrated Science Education (초·중등 과학교사들의 통합과학교육에 대한 인식과 교사 전문성에 관한 10년 주기(2008-2018) 비교 연구)

  • Maeng, Hee-Ju;Son, Yeon-A
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.6
    • /
    • pp.717-728
    • /
    • 2019
  • The cultivation of creative convergence talent has become more important than ever, the Korean curriculum has also undergone many changes, aiming for convergence and integrated education. In addition to these changes in science and curriculum, we examined the changes in perception and Professionalism(PCK) of integrated science education of science teachers over the past decade. For this study, 359 elementary and secondary science teachers in 2008, when the 2007 revised curriculum was applied, and 360 elementary and secondary science teachers in 2018, when the 2015 revised curriculum was applied, were examined for 10 years of changes in perceptions and PCK of integrated science education. The conclusions from the analysis were as follows. First, in 2018, elementary and secondary science teachers were found to have a statistically significant increase in awareness of integrated science education. Nevertheless, cognition was found to be 'normal'. Second, teachers' perception of the necessity of improving the professionalism of teachers, providing teaching and learning materials, reducing the contents of learning, reducing the number of students and securing flexible timetables, and raising the perception of integrated science education for students and parents as a condition for the success of integrated science education, was analyzed to be significantly higher in 2018. Third, the results of PCK survey through self-diagnosis, teachers' PCK on integrated science education, such as competence to secure curriculum contents knowledge, comprehension of curriculum and class composition related to integrated science education, teaching strategy for integrated, creation of teaching and learning environment for integrated teaching, efforts to improve administrative constraints and the professionalism of integrated science education, was significantly higher than it was ten years ago. Therefore, the recent emphasis on convergence education has increased the experience of applying convergence classes in the field of education, and it was seen as a result of the continuous efforts of science teachers to meet the changes in the education paradigm.