• Title/Summary/Keyword: 섬유 보강량

Search Result 192, Processing Time 0.026 seconds

Optimum Mix Proportions of In-fill Slurry for High Performance Steel Fiber Reinforced Cementitious Composite (초고성능 강섬유보강 시멘트 복합체의 충전슬러리 최적배합 도출)

  • Kim, Seung-Won;Park, Cheol-Woo;Kim, Seong-Wook;Cho, Hyun-Myung;Jeon, Sang-Pyo;Ju, Min-Kwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • As political circumstances in oversea countries and Korea varies, the risk of vulnerability from unexpected extreme loading conditions, such as explosions or extreme impacts, also increased. In addition, construction companies in Korea recently have taken chances of overseas expansion to countries where their domestic situations are not in rest. Therefore, the resistance of construction materials for blast or impact loading become taking more consideration from engineering field. This study is a part of the research to develop a high performance fiber reinforced cementitious composite materials with high volume steel fibers and primary purpose of this study is to find an optimum mix proportions of in-fill slurry. In order to accomplish the tasks this study performed experimental investigations on the slurry for consistency, compressive strength, flowability, J-penetration, bleeding and rheology properties as well as mechanical properties, compressive and flexural strength, with respect to different mix proportions.

Adhesion Properties of Rubber Composite with Direct Blending Technique and Adhesive Composition (직접블렌딩 기술과 접착제 조성이 고무복합체 물성에 미치는 영향)

  • Lee, Seong-Jae;Chang, Young-Wook;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.34 no.3
    • /
    • pp.253-261
    • /
    • 1999
  • The cure properties of rubber compounds containing different adhesive compositions were examined. As the amounts of tannin were increased in the adhesive composition, the scorch time was increased and cure rate was decreased due to the size and shape of tannin molecules. Also, the effect of adhesive composition on the adhesion between rubber and fiber was examined by TCAT(Tire Cord Adhesion Test), The reinforcing cords used in this study were mon ofilaments of nylon 610 and nylon 66. According to the results, the optimum adhesion strength between rubber and fiber could be obtained with adhesives whose molar ratios of formaldehyde/resorcinol were above 5/1 in the recipes. Although the level of dip pick-up(DPU) on the reinforcing cord affects the adhesion strength, the DPU of nylon 610 monofilament did not affect the adhesion strength because the level of DPU was constant regardless of the adhesive compositions. In this case, the adhesion strength with the adhesive composition could be explained with the behavior of tannin in the adhesive.

  • PDF

Experimental Study on Engineering Performance Evaluation and Field Performance of Environmentally Friendly Functional Concrete (친환경 기능성 콘크리트의 공학적 성능평가 및 현장적용성능에 관한 실험적 연구)

  • Lee, Byung-Jae;Park, Seong-Bum;Kim, Yun-Yong;Jang, Young-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.165-172
    • /
    • 2012
  • In this study, the physical, mechanical, structural, and environmental performances based on field measured data were evaluated to check the suitability of concrete for ecological preservation and cultivation of a hydrophilic environment. More specifically, the study is focused on developing an environmentally friendly functional concrete with river ecology restoration and natural river early formation capabilities. The mechanical performance evaluation results showed that the increase in mix rate of the PVA (Poly Vinyl Alcohol) reinforcement fibers and silica fume caused an increase in the strength. The optimal mix rate was found to be 0.05 volume % PVA fiber and approximately 10% silica fume. The frost resistance evaluation showed that superior performance was gained when 0.05 volume % PVA fiber and 15% silica fume was mixed simultaneously. In the structural performance evaluation, the bending strength was improved by 47.7% compared to plain concrete when mixed with 0.05 volume % PVA fiber. The flexural toughness also saw significant improvement. The environmental monitoring of field performance showed that grasses germinated most rapidly, but the growth of red poppies, a plant that germinates in the spring, was most active with passing of time. Coverage measurements in all of the monitoring locations found favorable coverage of over 95% after 12 weeks. The study results showed that the environmentally friendly functional concrete had outstanding environmental performance.

Deformation Behavior Investigation of Materials by Debonding Failure in Adhesion and Repairing-strengthening Methods of RC Construction (RC구조물 접착 보수·보강 공법의 박리와 연관한 재료의 변형 거동 분석)

  • Han, Cheon-Goo;Byun, Hang-Yong;Park, Yong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.89-98
    • /
    • 2007
  • This study investigates the deformation behavior, related to debonding failure, of adhesion and repairing-strengthening materials of RC construction. A strain-stress curve shows that when the stress of specimens reached the highest and then fails, the strain value of cement mortar is $2.0{\times}10^{-3}$, while concrete was indicated at around $1.3{\times}10^{-3}$, epoxy resins are $0.8{\times}10^{-3}$, polymer mortar is $2.5{\times}10^{-3}$, steel plate is $2.5{\times}10^{-3}$, and carbon bar was $9.1{\times}10^{-3}$, respectively. For a thermal expansion coefficient with temperature variation, those basis materials, cement mortar and concrete, exhibited around $10{\mu}{\varepsilon}/{^{\circ}C}$, but adhesive materials, such as epoxy resins and polymer mortar, were $41{\sim}54{\mu}{\varepsilon}/{^{\circ}C}$ and $-0.5{\sim}0.7{\mu}{\varepsilon}/{^{\circ}C}$, respectively. In the case of steel plate is similar to basic materials but carbon fiber is indicates at $-1.7{\mu}{\varepsilon}/{^{\circ}C}$, which is the lowest value. Especially, between basic and adhesive materials, the thermal expansion coefficient was highly different. Although the coefficient depends on the type of epoxy resins, it is clear that the epoxy resins are susceptible to be debonded in nature, when the difference of environmental temperature varies more than $20{\sim}35{^{\circ}C}$.

Dispersibility and Flexural Toughness Evaluation of Fiber Reinforcement Cellular Sprayed Concrete by added Foam (기포를 혼입한 섬유보강 셀룰러 스프레이 콘크리트 공법의 분산성 및 휨인성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Nam-Gung, Kyeong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4192-4200
    • /
    • 2015
  • In this paper, dispersibility of steel fiber is improved mixing with form for material development of protection and blast resistant structure sprayed concrete. And it is developed a high toughness cellular sprayed concrete material using steel fiber. Oversupply form for dispersibility improvement of steel fiber is mostly fade away through sprayed, finally it is satisfied with the proper mixing ratio under 3 % ~ 6 %. This is considered for compressive strength and flexural toughness. Test results of compressive strength showed superior strength capability in 28, 56 days, also flexural strength and flexural toughness is great. Then oversupply form is enhanced for dispersibility of steel fiber and I think that it did not cause decreasing of strength. But analysis results of pore structure through image analysis failed for a great spacing factor and specific surface area. This is largely measured in spacing factor because air content have a grate evaporation effect for sprayed.

Pullout Performance of Reinforcing Fiber Embedded in Nano Materials Cement Mortar with Nano Clay Contents (나노클레이 첨가량에 따른 나노재료 시멘트 모르타르에 정착된 보강섬유의 인발성능)

  • Oh, Ri-On;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.113-121
    • /
    • 2013
  • Recently, it has been studied for the application of nano-materials in the concrete. Applied a small amount of nano-materials can achieve the goal of high strength, high performance and high durability. The small addition of nano clay improves strength, thermal stability, and durability of concrete because of the excellent dispersion. The present study has investigated the effectiveness, when varying with the contents of nano clay, influencing the pull-out behavior of macro synthetic fibers in nano materials cement mortar. Pullout tests conducted in accordance with the Japan Concrete Institute (JCI) SF-8 standard for fiber-reinforced concrete test methods were used to evaluate the pullout performance of the different nano clay. Nano clay was added to the 0, 1, 2, 3, 4 and 5 % of cement weight. The experimental results demonstrated that the addition of nano clay led to improve the pull-out properties as of the load-displacement curve in the precracked and debonded zone. Also, the compressive strength, flexural strength and pullout performance and of Mix No. 1 and No. 2 increased up to the point when nano clay used increased by 2 and 3 % contents, respectively, but decreased when the exceeded 3 and 4 %, respectively. It was proved by verifying increase of the scratching phenomenon in macro synthetic fiber surface through the microstructure analysis on the surface of macro synthetic fiber.

Process Development for in-situ Transverse Orientation of TLCP Fibril in PC/TLCP Blends (액정고분자 복합계의 in-situ 횡단면 배향을 위한 공정개발)

  • 이재욱
    • The Korean Journal of Rheology
    • /
    • v.10 no.2
    • /
    • pp.82-91
    • /
    • 1998
  • 액정고분자/폴리카보네이트 혼합계로 구성된 분자복합계를 쉬트상으로 가공할 때 취 약해지기 쉬운 횡단면 방향의 물성을 향상시키기 위하여 미세섬유상의 배향을 in-situ 상태 로 적절히 제어할수 있는 Simultaneous Convergent-Divergent(SCD) 다이를 설계·제작하 고 압출실험을 수행하여 얻은 압출 쉬트를 대상으로 구조-물성-가공의 상관관계를 조사하 였다. 액정고분자의 첨가 함량에 따른 토오크와 토출량의 변화는 액정고분자를 10wt% 소량 첨가하였음에도 현저한 감소 효과를 보였으며 약 30wt%일 때 최소로되었다. 이는 액정고분 자가 보강 기능외에 가공특성의 개선에도 큰 효과가 있어 가공조제로서의 가능성을 보이는 결과로 혼합계의 유변학적 특성 결과에서도 확인할수 있었다. 또 DSC와 DMA를 이용한 열 분석 결과 액정고분자의 함량이 증가함에 따라 PC의 유리전이온도가 다소 감소하는 현상을 보임에 미루어 이 혼합계는 부분적으로 상용성을 갖는 것으로 볼수 있으며 모폴로지 분석을 통해서도 이를 확인할수 있었다. TLCP/PC 혼합계로 구성되는 분자복합재를 SCD 다이를 사용하여 제조한 압출 쉬트의 방향성에 따른 기계적 물성은 기존의 쉬트 다이보다 흐름방향 으로는 다소 낮은 물성치를 보이지만 횡단면 방향으로는 물성이 현저히 향상됨을 관찰할수 있었다. 모폴로지 분석결과 기존의 쉬트 다이의 경우 벽면 부근에서는 액정고분자가 미세섬 유상으로 형성되어 흐름방향으로 배향되어 있지만 중심부에서는 액정 상태로 존재하는 반 면, SCD 다이의 경우 미세섬유상으로 형성된 액정고분자가 벽면에서부터 중심부로 갈수록 횡단면 방향으로 서서히 배향되어 있음을 확인할수 있었다.

  • PDF

The Quality Characteristic and Antioxidant Properties of Saccharified Strawberry Gruels (당화 딸기죽의 품질특성 및 항산화능)

  • Kim, Jin-Sook;Kim, Ja-Young;Chang, Young-Eun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.6
    • /
    • pp.752-758
    • /
    • 2012
  • We conducted this study to investigate the quality and antioxidant properties of saccharified strawberry gruel with different ratios of strawberry rice mash. Different samples of saccharified strawberry gruel with different ratios of strawberry puree were prepared, and the proximate composition, sweetness, pH, acidity, color difference, texture, free sugar, sensory evaluation, and physiological activities of the sample were measured. With increasing strawberry puree content, the proximate compositions, sweetness, and total acidity of the strawberry gruel increased, and pH decreased significantly (p<0.05). Saccharified strawberry gruel prepared with 15% to 45% strawberry puree displayed significantly lower viscosity. As the amount of strawberry puree increased, the Lvalue, and b-value decreased, whereas the a-value increased. The free sugar content of fructose, glucose, maltose, sucrose, and total free sugar increased significantly (p<0.05). Strawberry gruel with 30% added strawberry puree was the most preferred for, its color, flavor, taste, texture, and overall acceptability preference. With increasing strawberry puree content, the total polyphenol contents, total flavonoid contents, DPPH, and ABTS radical scavenging of strawberry gruel increased significantly (p<0.05). From these results, we found that adding 30% strawberry puree was the best way to make gruel with high sensory qualities.

Behavior of Geosynthetic Reinforced Wall with Heat Induce Drainage Method During Rainfall (열유도 토목섬유 배수공법이 적용된 보강토 옹벽의 강우시 거동 특성)

  • Shin, Seung-min;Sin, Chun-won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • This paper presents the results of a scale model test to the effect of heat exchanger drainage method in retaining wall of weathered granite soil. Purpose to rise in the temperature of the heat wires inside the weathered granite soil is preventing the collapse of the retaining wall and drainage smoothly moved to the drainage layer. Especially using a spray gun to simulate the rainfall since the rainfall drainage work is important for the rainfall effect on soil, find the difference about displacement of the retaining wall, change of volume water content, drainage, earth pressure and change in the strain of the geosynthetic was effected to heat exchanger within the soil. The result from applying the heat exchanger method decreased the earth pressure and displacement of the wall and increased drainage of water.

Study of the Curing Reaction Rate of a Glass Fiber Reinforced Bisphenol-A (BPA) Epoxy Prepreg by Differential Scanning Calorimetry (DSC) (Differential Scanning Calorimetry (DSC)를 이용한 유리섬유 Bisphenol-A(BPA)계 에폭시 프리프레그의 경화 반응 속도 연구)

  • Kwon, Hyeon-Jin;Park, Hee-Jung;Lee, Eun-Ju;Ku, Sang-Min;Kim, Seon-Hong;Lee, Kee-Yoon
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • The curing behavior of glass fiber reinforced epoxy prepregs based on Bisphenol-A (BPA) was studied by differential scanning calorimetry (DSC). The total heat of reaction(${\Delta}H_{total}=280.3J/g$) was determined based on the results of the dynamic heating scanning experiments. Isothermal experiments were carried out at $110{\sim}130^{\circ}C$, and it was observed that the maximum conversion and the maximum reaction rate were increased as temperature increased. Also Kamal equation was applied to analyze autocatalytic reaction of epoxy prepregs. The higher temperatures, the greater reaction rate constants ($k_1$, $k_2$). Theoretical values were calculated by these reaction rate constants and compared with experimental values. And it was confirmed that they were in reasonable agreement. At the beginning of the reaction, the experimental data and theoretical prediction were shown the same tendency, but at the end of reaction, the experimental data were smaller than theoretical predicted values due to reaction rates controlled by diffusion.