• Title/Summary/Keyword: 섬유 배열

Search Result 227, Processing Time 0.035 seconds

DISPLACEMENT OF MAXILLARY LATERAL INCISOR CAUSED BY IDIOPATHIC GINGIVAL FIBROMATOSIS (특발성 치은 섬유종증에 의한 상악 측절치의 변위)

  • Jung, Ji-Sook;Park, Ho-Won;Lee, Ju-Hyun;Seo, Hyun-Woo;Lee, Suk-Keun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.38 no.3
    • /
    • pp.296-302
    • /
    • 2011
  • Idiopathic gingival fibromatosisrarely occurs, but frequently recurred after surgical removal. It usually occurs in generalized symmetrical pattern but sometimes in localized unilateral pattern. The localized pattern usually affects the maxillary molar and tuberosity area. This disease usually causes tooth migration, malocclusion, and problems in eating, speech, and esthetics. A boy showed dense gingival fibromatosis localized at primary maxillary right lateral incisor area at the age of 5 years, and his maxillary right lateral incisor become severely displaced at the age of 9 years. He had no medical and hereditary factors relevant to the gingival fibromatosis. However, the dense fibrous tissue was dominant in his labial gingiva of maxillary right incisors. In order to realign the displaced incisors by orthodontic treatment, the dense fibrous tissue covered the defect space between the central incisor and the displaced lateral incisor was surgically removed. The removed specimen was examined by simple immunohistochemical(IHC) array method. IHC array showed increased expression of CTGF, HSP-70, MMP-1, PCNA, CMG2, and TNF-${\alpha}$ in keratinocytes, fibroblasts, endothelial cells, and macrophages of gingival fibromatosis tissue. Therefore, it was suggested that the gingival fibromatosis be caused by the concomitant overexpression of CTGF, HSP-70, MMP-1, PCNA, CMG2, and TNF-${\alpha}$, and resulted in the fibroepithelial proliferation and the inflammatory reaction of gingival tissue.

Mechanical Properties of Fiber Reinforced Concrete According to Steel Fiber Dispersion (강섬유의 분포 특성에 따른 섬유보강 콘크리트의 역학적 특성)

  • Lee, Bang-Yeon;Kang, Soo-Tae;Kim, Yun-Yong;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.921-924
    • /
    • 2008
  • Several techniques, including transmission X-ray photography and AC-impedance spectroscopy, are available for evaluating the fiber dispersion in a fiber reinforced concrete Evaluating the fiber dispersion in fiber reinfored concrete needs since the fibers bridge crackseffectively. However, these equipment is very expensive. Therefore this paper presents the quantitative evaluation method based on the image analysis of sectional image taken using an ordinary digital camera. After detecting the fiber accurately, the fiber dispersion characteristics are represented by the coefficient such as the fiber dispersion coefficient, the number of fibers in unit area, and the distribution of the fiber orientation. Test were performed to evaluate the effectiveness of proposed method and the dispersion characteristics of fibers according placing method and flow direction. Additionally, the effect of fiber dispersion characteristics on mechanical properties was investigated. Test results shows that fiber aligned along the flow direction and more fibers placed and dispersion was better on the section parallel to the flow direction. And about 50% difference in the flexural tensile strength according to the placing method occured.

  • PDF

Fracture Toughness of Glass Fiber Reinforced Laminated Timbers (유리섬유 보강적층재의 파괴인성 특성)

  • Kim, Keon-ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.861-867
    • /
    • 2015
  • The Compact Tension (CT) type test was performed in order to evaluate the fracture toughness performance of glass fiber-reinforced laminated timber. Glass fiber textile and sheet Glass fiber reinforced plastic were used as reinforcement. The reinforced laminated timber was formed by inserting and laminating the reinforcement between laminated woods. Compact tension samples are produced under ASTM D5045. The sample length was determined by taking account of the end distance of 7D, and bolt holes (12 mm, 16 mm, 20 mm) had been made at the end of artificial notches in advance. The fracture toughness load of sheet fiberglass reinforced plastic reinforced laminated timber was increased 33 % in comparison to unreinforced laminated timber while the glass fiber textile reinforced laminated timber was increased 152 %. According to Double Cantilever Beam theory, the stress intensity factor was 1.08~1.38 for sheet glass fiber reinforced plastic reinforced laminated timber and 1.38~1.86 for glass fiber textile reinforced laminated timber, respectively. That was because, for the glass fiber textile reinforced laminated timber, the fiber array direction of glass fiber and laminated wood orthogonal to each other suppressed the split propagation in the wood.

전기 방사 방법을 이용한 산화아연 나노 섬유의 합성법과 일산화질소 가스에 대한 특성

  • Kim, Ok-Gil;Kim, Hyo-Jin;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.101.1-101.1
    • /
    • 2012
  • 이번 연구에서는 전기 방사 방법을 이용하여 합성된 산화아연 나노 섬유의 일산화질소 가스에 대한 반응 특성을 조사하였다. 이 산화아연 나노 섬유는 증류수에 용해시킨 아연 아세테이트(zinc acetate)와 폴리 비닐 알콜(poly vinyl alchol, PVA)로 만들어진 용액이 전기 방사되어지며 만들어지게 된다. 무엇보다도 나노 섬유의 직경은 용액의 점도에 의해 결정되었다. 따라서 산화아연 나노 섬유의 고른 두께를 형성하기 위하여 PVA의 양을 조절하여 적절한 용액의 농도를 찾게 되었다. 이후 진행된 열처리 공정을 통해서 우리는 직경이 30~100나노미터 가량의 나노 섬유를 얻을 수 있었으며 무작위로 배열된 통기성 네크워크 구조를 얻게 되었다. 표면 분석을 위하여 주사현미경을 이용하였는데, 산화아연 나노 섬유의 표면은 열처리 전과 후로 나누어 관찰되었으며 열처리 전보다 열처리 후의 표면이 좀 더 거친 것으로 확인되었다. 이는 열처리 공정을 거치면서 효과적으로 유기물들의 제거가 이루어진 것을 짐작할 수 있었다. 일산화질소 가스에 대한 특성 평가를 위해 자체 제작된 전류-전압 측정 장치(I-V measurement)가 사용되었다. 다양한 작동온도와 다양한 일산화질소 가스 농도의 변화를 주며 얻어진 응답도를 통해서, 전기 방사를 통해 만들어진 산화아연 나노 섬유 구조 기반의 가스 센서는 두드러질만큼 좋은 응답도를 가졌고 작동 온도 $200^{\circ}C$에서 일산화질소 가스에 대한 최대 민감도를 보임을 분명히 확인할 수 있었다. 특히, 산화아연 나노 섬유 구조 기반의 가스 센서는 ppm이하의 낮은 일산화질소 가스 또한 감지할 수 있음을 확인하였다. 이러한 결과들은 전기 방사를 통해 만들어진 산화아연 나노 섬유기반의 가스 센서는 저비용, 고감도의 장점을 갖는 일산화질소 가스 센서가 될 것임을 알 수 있었다.

  • PDF

Directional Solidification of Fibrous Eutectic System (섬유상 공정계의 일방향응고)

  • 김신우
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.42-42
    • /
    • 2003
  • 두개의 다른 고상이 동시에 액상으로부터 응고되는 공정합금에 일방향응고를 적용함에 따라 응고방향으로 규칙적으로 잘 배열된 복합재료를 만들 수 있다. 이렇게 방향성을 가지고 응고된 공정조직은 여러 가지 기계적, 전기적, 자기적 특수분야에 이용될 수 있다. 그런데 공정조직의 상간격은 재료의 기계적, 물리적 성질과 밀접한 관계를 가지며 응고속도, 온도기울기와 같은 일방향응고의 변수에 따라 결정된다. 그래서 본 연구에서는 금속합금계와 유사한 섬유상 공정조직을 보이는 NaNO$_3$-NaCl계를 이용하여 공정조직의 미세구조와 일방향응고 변수와의 관계를 조사하였다. 또한 액상으로부터 시간에 따른 냉각곡선으로부터 공정온도와 공정조성부근의 부분상태도를 구하였다. 그리고 응고녹도(V)에 따른 섬유상간격(λ$_{E}$ )의 실험적 관계식을 두가지의 온도기울기에 대하여 구하여 금속재료의 결과식과 비교, 검토하였다.

  • PDF

단섬유강화 세라믹 복합재료의 크립 모델링

  • Kim, Jin
    • Journal of the KSME
    • /
    • v.30 no.2
    • /
    • pp.180-187
    • /
    • 1990
  • 세라믹 복합재료의 크립 파괴거동의 근원이 되는 크립거동에 대한 해석은 현재까지 제시되어 있 는 것이 거의 전무하여, 세라믹 복합재료의 고온신뢰도는 실험에 의존되어 많은 시간과 노력이 소요된다. 여기서는 해석방법으로 advanced shear-lag 모델을 기본으로 세라믹 복합재료 특성을 고려하여 모델링 해석을 제시하였다. 여러 영향 인자들-보강섬유 형상비, 보강섬유 끝단의 간격, 계면에서의 미끄름계수, 단위 모델안의 보강섬유 배열이 크립거동에 미치는 효과에 대해 인자 변화효과(parametric study)를 관찰하여 실험에 의해 얻은 SiCw/A1$_{2}$O$_{3}$의 크립 결 과와 비교하였다. 모델링 해석을 통해 얻은 특정범위 내의 결과는 실험결과를 수용할 수 있으 므로 이 해석방법을 세라믹 복합재료 크립거동의 한방법으로 이용할 수 있으리라 사료된다.

  • PDF

Fine Structure of the Sperm in the Myotis daubentonii ussuriensis (물윗수염박쥐(Myotis daubentinii ussuriensis)의 정자미세구조)

  • Kim, Hyun-Hee;Lee, Jung-Hun
    • Applied Microscopy
    • /
    • v.41 no.1
    • /
    • pp.31-35
    • /
    • 2011
  • The fine structures of the sperm morphology in the Myotis daubentonii ussuriensis were observed by transmission electron microscope. The results showed that the sperm head revealed bullet shaped, the width was showed a slender more than toward the posterior region to anterior region of nucleus. The sperm head was about $4.5{\mu}m$ in length, being about $2.0{\mu}m$ in width. The nuclear length was $4.3{\mu}m$, occupied most of the sperm head. The nucleus and acrosome were separated by the apical body. The neck region was composed the basal plate, capitulum and segmented columns. The segmented columns were about 12 to 14 in number and connected with the outer dense fibers of the middle piece. The mitochondria sheath were arranged like the thread of a screw, and the total number of mitochondrial gyres were 57. The satellite fibers were observed irregularly among the outer dense fibers in the middle piece. Except the middle piece they are not observed in the principal and end pieces of the tail. In general, the tail show axoneme composed of a 9+2 microtubular pattern, and microtubules of the end piece were arranged irregularly.

Bending Creep Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards (목재와 목질보드 복합적층재의 휨 크리프 성능)

  • Park, Han-Min;Kang, Dong-Hyun;Choi, Yoon-Eun;Ahn, Sang-Yeol;Ryu, Hyun-Su;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, to study an effective use and improve strength performances of woods and wood-based materials, three-ply hybrid laminated woods which are composed of spruce in the face and three kinds of wood-based boards (MDF, PB, OSB) in the core were manufactured, and the effect of constitution elements used for the core laminae on bending creep performances was investigated. The shape of creep curves showed exponential function plots which the upper right side was increased, and differed among the kinds of wood-based boards used for the core laminae of hybrid laminated wood. The creep deformation perpendicular to the grain of faces of hybrid laminated woods was in order $C_{\perp}$(P) > $C_{\perp}$(M) > $C_{\perp}$(O) with PB, MDF and OSB in the core, respectively. It was found that the creep deformation arranged with OSB in the core had 2 times smaller than those arranged with MDF and PB in the core. By hybrid laminating, the creep deformation of spruce perpendicular to the grain was markedly decreased. On the other hand, the creep deformation parallel to the grain of the faces ($C_{\parallel}$ type) of hybrid laminated woods was in order $C_{\parallel}$(P) > $C_{\parallel}$(O) > $C_{\parallel}$(M) with PB, OSB and MDF in the core. The ratios among three hybrid laminated woods were considerably decreased, especially the difference between $C_{\parallel}$(P) and $C_{\parallel}$(O) hybrid laminated woods arranged with PB and OSB in the core was very small. These values showed 0.108~0.464 times smaller than creep deformation of three wood-based boards and it was found that creep deformation of three wood-based boards was considerably decreased by hybrid laminating. Creep anisotropy of hybrid laminated woods was greater in creep deformation than in initial deformation, whereas it was found that the values was much smaller than that of spruce parallel laminated woods.

Prediction of Wetting and Interfacial Property of CNT Reinforced Epoxy on CF Tow Using Electrical Resistance Method (전기저항 평가법을 이용한 CNT 함유 에폭시의 탄소섬유내 젖음성 및 계면특성 예측 연구)

  • Kwon, Dong-Jun;Choi, Jin-Yeong;Shin, Pyeong-Su;Lee, Hyung-Ik;Lee, Min-Gyeong;Park, Jong-Kyoo;Park, Joung-Man
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.232-238
    • /
    • 2015
  • As a new method to predict the degree of dispersion in carbon nanocomposites, the electrical resistance (ER) method has been evaluated. After CNT epoxy resin was dropped on CF tow, the change in electrical resistance of carbon fiber tow was measured to evaluate dispersion condition in CNT epoxy resin. Good dispersion of CNTs in carbon nanocomposite exhibited low change in ER due to wetted resin penetrated on CF tow. However, because CNT network was formed among CFs, non-uniform dispersion occurred due to nanoparticle filtering effect by CF tow. The change in ER for poor dispersion exhibited large ER signal change. The change in ER was used for the dispersion evaluation of CNT epoxy resin. Correlation between interlaminar shear strength (ILSS) and dispersion condition by ER method was established. Good CNT dispersion in nanocomposites led to good interfacial properties of fiberreinforced nanocomposites.