• Title/Summary/Keyword: 섬유판

Search Result 399, Processing Time 0.026 seconds

Fracture Characteristics of RC Beams Reinforced with GFSP (유리섬유-강 복합판으로 보강된 RC 보의 파괴 특성)

  • Kim, Chung Ho;Jang, Hee Suk;Ko, Sin Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.153-159
    • /
    • 2007
  • This paper is experimental investigation for failure characteristics and performance of a RC beams strengthened with GFSP which were developed for improvement of the early debonding problems in the externally bonded FRP systems. To represent damages and load conditions of the existing beam, pre-cracks and repeating loads are adopted for experimental parameters. In this experiment, it is confirmed that strengthening with GFSP is a very effective strengthening method for an increase in strength, a decrease in deflection, a control of the crack. But it shown that the design of the beams to be strengthened with GFSP should be consider a brittle behavior of the grass fiber on the flexural capacity.

A Study on the Buckling and Postbuckling Behaviors of Laminated Composite Plates and Stiffened Laminated Composite Panels by Finite Element Method (유한요소법을 이용한 복합적층판과 보강된 복합적층 패널의 좌굴 및 좌굴후 거동에 관한 연구)

  • 허성필;양원호;성기득;조명래
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.599-606
    • /
    • 1999
  • 복합 적층 판과 보강 재를 설치한 보강된 복합 적층 패널의 좌굴을 고려한 설계에서, 좌굴이 항상 구조물의 최종 파손을 의미하는 것은 아니므로 이들의 좌굴 및 좌굴 후 거동에 대한 정확한 이해와 연구가 필요하다. 본 연구에서는 유한요소 법을 이용하여 적층 메커니즘과 섬유 배향각, 적층 순서 등이 복합 적층 판과 보강된 복합 적층 패널의 좌굴 및 좌굴 후 거동에 미치는 영향을 체계적으로 해석하였고, 각 변수에 따른 좌굴 및 좌굴 후 거동 특성을 분석하였다.

  • PDF

Stacking Sequence Design of Fiber-Metal Laminate Composites for Maximum Strength (강도를 고려한 섬유-금속 적층 복합재료의 최적설계)

  • 남현욱;박지훈;황운봉;김광수;한경섭
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.42-54
    • /
    • 1999
  • FMLC(Fiber-Metal Laminate Composites) is a new structural material combining thin metal laminate with adhesive fiber prepreg, it nearly include all the advantage of metallic materials, for example: good plasticity, impact resistance, processibility, light weight and excellent fatigue properties. This research studied the optimum design of the FMLC subject to various loading conditions using genetic algorithm. The finite element method based on the shear deformation theory was used for the analysis of FMLC. Tasi-Hill failure criterion and Miser yield criterion were taken as fitness functions of the fiber prepreg and the metal laminate, respectively. The design variables were fiber orientation angles. In genetic algorithm, the tournament selection and the uniform crossover method were used. The elitist model was also used to be effective evolution strategy and the creeping random search method was adopted in order to approach a solution with high accuracy. Optimization results were given for various loading conditions and compared with CFRP(Carbon Fiber Reinforced Plastic). The results show that the FMLC is more excellent than the CFRP in point and uniform loading conditions and it is more stable to unexpected loading because the deviation of failure index is smaller than that of CFRP.

  • PDF

Fiber Volume Fraction Measurement of Fiber Reinforced Plastics by Using Gamma-Ray (감마선을 이용한 복합재료의 섬유체적분율 측정)

  • Jang, J.H.;Cho, K.S.;Chang, H.K.;Park, J.H.;Lee, J.O.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.3
    • /
    • pp.151-155
    • /
    • 1997
  • In this research, nondestructive test using a radioisotope, $^{241}Am$ gamma-ray, was accomplished in order to evaluate the fiber volume fraction of the accumulated composite layers such as glass fiber/epoxy and carbon fiber/epoxy. Attenuation coefficients of the fiber and resin were measured respectively by NaI(T1) detector The fibers volume fraction was measured for various thickness of composite layers between 2 and 20mm. Fiber volume fraction of the composite layers were also measured for various amount of fibers. The experimental errors from nondestructive test using gamma-ray were in the range of ${\pm}1{\sim}2.5%$ in comparison with those from observation by optical microscopy. By selecting the optimum energy and activity of radioisotope, this method can provide a new means for the evaluation of the fiber volume fraction.

  • PDF

Matrix Resin Systems with Different Molar Ratios to Improve the Properties of Fiber-reinforced Composites (섬유강화 복합재료의 물성향상을 위한 몰비가 다른 매트릭스 수지에 관한 연구)

  • 이상효;이장우
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.459-468
    • /
    • 2000
  • To improve the mechanical properties of fiber-reinforced polymer matrix composites, laminated composites plates were fabricated using different matrix resins and glass or aramid fibers. The effect of matrix resin system were evaluated by tensile, flexural strength measurements. In the case of surface treated aramid fiber and unsaturated polyester resin composite, maximum flexural properties were observed in the composite prepared from the glass fiber treated with 0.5 wt% silane coupling agents. Vinylester resin composites show the highest tensile properties and isophthalic polyester composites have the highest flexural properties among the unsaturated polyester resin composites studied. The relationship between overlap laminated composites plates and mechanical properties of polymer composites is also investigated in order to improve mechanical properties of glass fiber and unsaturated polyester resin composites.

  • PDF

Studies on the Fire Retardant Treatment of Wet Forming Mat for Hardboard (경질섬유판(硬質纖維板)의 습식(濕式)매트 내화처리(耐火處理)에 관(關)한 연구(硏究))

  • Shin, Dong-So;Lee, Hwa-Hyoung;Shim, Chong-Supp
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.180-188
    • /
    • 1982
  • This study was carried out to make hardboard fire retardants and to examine the properties of the hard-board treated with them. The fire retardant treatment was achieved by surface impregnation of water soluble retardant chemicals into the forming mat with 55 percent of moisture content. followed by the hot pressing process. Ammonium monophosphate, ammonium diphosphate, sodium borate, and boric acid were used as the fire retardants. Fire retardant test was carried out by using the differential thermal analysis thermogram. The results are summarized as follows: 1. Fire retardant-treated hardboard showed higher values of the specific gravity. water absoption, and flexural strength than those of untreated hardboard. Especially, the treatment of ammonium monophosphate gave the best results in the flexural strength, and a 10 gr/$ft^2$ loading of the fire retardant compound of ammonium monophoshate, ammonium diphosphate, and sodium borate drew the best flexural strength value among the three different experimental loadings of 10, 20 and 30 gr/$ft^2$. 2. There were no definite differences in moisture content between the fire retardant-treated hardboard and the untreated hardboard. 3. The fire retardant compound of ammonium monophosphate, ammonium diphosphate, and sodium borate resulted in the best fire retardancy, and its fire retardancy was increased in proportion to the increase of loading.

  • PDF

Prediction of Fatigue life of Composite Laminates using Micromechanics of Failure (미시역학적 파손이론을 이용한 복합재 적층판의 피로수명 예측)

  • Jin, Kyo-Kook;Ha, Sung-Kyu;Kim, Jae-Hyuk;Han, Hoon-Hee
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • Many tests are required to predict the fatigue life of composite laminates made of various materials and having different layup sequences. Aiming at reducing the number of tests, a methodology was presented in this paper to predict fatigue life of composite laminates based on fatigue life prediction of constituents, i.e. the fiber, matrix and interface, using micromechanics of failure. For matrix, the equivalent stress model which is generally used for isotropic materials was employed to take care of multi-axial fatigue loading. For fiber, a maximum stress model considering only stress along fiber direction was used. The critical plane model was introduced for the interface of the fiber and matrix, but fatigue life prediction was ignored for the interface since the interface fatigue strength was presumed high enough. The modified Goodman equation was utilized to take into account the mean stress effect. To check the validity of the theory, the fatigue life of three different GFRP laminates, UDT[$90^{\circ}2$], BX[${\pm}45^{\circ}$]S and TX[$0^{\circ}/{\pm}45^{\circ}$]S was examined experimentally. The comparison between predictions and test measurements showed good agreement.

Evaluating the Applicability of Activated Carbon-added Fiberboard Filters Fabricated with Lignocellulosic Fiber for the Reduction Equipment of Particulate Matter (리그노셀룰로오스 섬유 기반 활성탄-첨가 섬유판 필터의 미세먼지 저감장치용 적용가능성 평가)

  • Yang, In;So, Jae min;Hwang, Jeong Woo;Choi, Joon weon;Lee, Young-kyu;Choi, Wonsil;Oh, Seung Won;Moon, Myoung cheol
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.548-556
    • /
    • 2021
  • This study was conducted to investigate the applicability of lignocellulosic fiber and coconut shell activated carbon (CSA) for the production of a particulate matter (PM)-reducing air-filter as raw materials to solve the environmental problems of non-woven fabrics. CSA had a good potential to use as a raw material of air-filter for reducing volatile organic compounds as well as noxious metals, and reduction capability of the CSA was 5 times higher than that of wood fiber. Natural adhesives formulated with proteinaceous wastes mostly were applied successfully to fabricate air-filters with the shape of fiberboard. The air-filter fabricated with the minimum target density of 200 kg/m3 and the maximum CSA-content of 40 wt% in fiberboard had a good manageable strength. However, the fiberboard filters was required to make vent-holes for improving an air-permeability of the filters. Size of the CSA particles was adjusted to greater than 2 mesh with the consideration of strength and formability of the fiberboard. Three-layers fiberboard that only wood fiber and the mixture of wood fiber and CSA were formed in the surface and middle layers, respectively, was determined to the optimal condition for the production of air-filters. In addition, traditional Korean paper handmade from mulberry trees (TKP) showed a good PM-reducing property as an air-filter. It is concluded that air-filtering set composed of fiberboard with vent-holes and TKP instead of conventional air-filters made with non-woven fabrics can be used as a filter for reducing the concentrations of PM, VOC and noxious metals existed in indoor and outdoor spaces.

Fatigue Life Analyses and Improvement of Structural Design of a Heating Drum for the Medium Density Fiberboard (섬유판 제작용 압연프레스 가열드럼의 피로수명 해석과 구조설계 개선에 관한 연구)

  • Lee Boo Youn
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.202-208
    • /
    • 2005
  • Stress and fatigue life analyses are performed to enhance a fatigue life of a heating drum of the roller press for medium density fiberboard. The finite element method employing the submodel is used to analyze stress concentration in the journal of the heating drum. The fatigue life is evaluated by the stress-life theory. Two modified designs of the journal are suggested and evaluated to reduce the maximum stress and to increase the fatigue life Their structural reliabilities are verified in terms of the yield strength and the design life.

Prediction and Analysis of Fracture Strength for Surface Flawed Laminates (표면 손상을 입은 적층판의 강도 예측 및 분석)

  • 최덕현;황운봉
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.15-20
    • /
    • 2003
  • In this paper, the fracture strength of the surface damaged laminates was predicted by applying the fracture strengths of the unflawed and flawed laminates. For prediction, the theoretical equation about the fracture strength of laminates was simplified applying classical laminate theory and was applied to the surface damaged laminates. Lagace's and Tsai's experimental data were used for verifying the theoretical equation. Moreover, to verify the theoretical prediction, an experiment was performed. Surface unflawed laminate and flawed laminates were fabricated and the experiments were made and these results were compared with theoretical predictions. The specimens' fiber direction was same to the tensile direction and the theoretical predictions and the experimental results were showed good agreement. Therefore, by this equation, the fracture strength of structures made of composites will be able to be predicted when the surface of the structures was damaged.