• Title/Summary/Keyword: 섬유분산

Search Result 395, Processing Time 0.032 seconds

마직물의 태에 관한 연구 -주관적 태 평가 방법과 객관적 태 측정을 통한 산출식의 개발을 중심으로-

  • 박성혜;유효선
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.03a
    • /
    • pp.219-219
    • /
    • 1999
  • 마직물은 통기성, 흡수성, 투습성이 좋고 건조가 빠른 편이므로 여름철 직물로 많이 사용되어 왔다. 마직물은 또한 뻣뻣하며 몸에 감기지 않고 촉감이 깔깔하여 시원한 느낌을 주며 다른 직물에 비해 강직하고 표면이 거칠고 드레이프성이 떨어지는 등의 독특한 태를 가지고 있다. KES-F 시험기에 의해 여러 물성량들을 종합적으로 계측할 수 있게 됨에 따라 의복의 착용감에 만족을 주는 소재의 성능에 대한 연구가 종래의 주관적평가에서 KES-F 시스템을 이용하여 객관적으로 태를 예측하는 방법으로 진행되고 있다. 그러나 태를 평가하는 객관적 방법에서는 일반적으로 Kawabata와 Niwa에 의해 만들어진 평가식들이 주로 사용되나 이런 식들은 주로 모직물이나 합성섬유직물들을 평가하기에는 적합하지만 마직물의 독특한 태를 평가하기에는 부족하다고 생각된다. 마직물의 태가 기존의 객관적 평가방법만으로는 규명되지 않기 때문에 주관적 태평가방법을 아울러 실시해야 할 필요가 있다고 생각된다. 따라서 본 연구에서는 마직물의 태를 평가하는 방법의 하나로 주관적 평가척도를 개발하고 이 척도를 사용하여 마직물의 주관적인 태 특성을 살펴보았다. 그리고 KES-FB 시스템을 사용한 객관적인 태를 측정하여 주관적 평가치와 객관적 측정치로부터 태 평가의 산출식을 유도하였다. 실험에 사용된 직물은 혼방률, 밀도, 두께 등이 다양한 암, 저마 그리고 마혼방직물과 한산모시, 중국마, 신합섬 직물 등 총 54종을 사용하였다. 마직물의 주관적 태 평가를 위해 26문항의 형용사쌍으로 구성된 9점의 의미미분척도를 개발하였으며 이 척도를 사용해 주관적 평가를 실시하였다. 또 객관적 평가를 위해 KES-FB 시스템을 통해 역학적 특성치를 구하였다. 주관적 평가를 실시한 결과 마직물의 태에 영향을 미치는 7개의 요인이 추출되었다. 이 요인들은 표면성질, 신축성/드레이프성, 중량감, 강연성, 회복성, 수분특성, 밀도감이었으며, 요인들로 설명되는 누적분산값은 67.18%였다.주관적 평가의 결과와 객관적 평가 결과를 이용해 마직물의 태를 평가하는 산출식을 제시하였다. 태 평가치의 경우 16가지 특성치를 모두 넣는 방법과 stepwise 방법, 또 Kawabatark 사용한 순차적 군 회귀법의 세가지 방법의 회귀식 중 16가지 특성치를 모두 넣는 방법의 결정계수가 가장 높았다.

  • PDF

Numerical Analysis of Load Carrying Capacity of RC Structures Based on Concrete Damage Model (콘크리트 손상 모델을 적용한 콘크리트 구조물 구조내력 해석)

  • Woo, Sang Kyun;Lee, Yun;Yi, Seong Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.121-128
    • /
    • 2012
  • In this paper, nonlinear analysis for reinforced concrete structure for power transmission line is performed by considering the characteristics of the failure, which are depend on loading conditions and concrete material models. On the numerical evaluation for the failure behavior, the finite element analysis is applied. For the concrete material model, microplane model based on concrete damage is introduced. However, to describe the crack bridging effect of long and short fiber of steel fiber reinforced concrete (SFRC), tensile softening model is suggested and applied for SFRC. An numerical results by finite element technique are compared with the experiment results for box culvert specimen. Comparing on the experimental and analytical results, validity and reliability of numerical analysis are investigated.

Shape Optimization of the Metal Boss for a Composite Motor Case (복합재 연소관의 금속 보스 형상 최적설계)

  • Jeong, Seungmin;Kim, Hyounggeun;Hwang, Taekyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.29-37
    • /
    • 2016
  • This paper proposes a shape optimization of the metal boss for a composite motor case using finite element analysis. For the structural safety and the weight reduction of the composite motor case, under the internal pressure, the fiber stress in the dome area and the tightening bolt stress are constrained and the boss weight is set to objective function, respectively. The response surface models are constructed for the performance characteristics by using response surface method. The significance of the design variables about the performance characteristics is evaluated through the ANOVA(analysis of variance) and the goodness of fit test for the constructed model is performed through the regression analysis. The SQP(sequential quadratic programming) algorithm is used for the optimization and the proposed method is verified by performing structural analysis for the optimum shape.

A Study on Technology of Waterproofing of the Concrete Structure Which Used Soft FRP Resin and Square Groove Cutting Technique (연질 FRP 수지와 정방형 홈 컷팅 기술을 이용한 콘크리트 구조물의 방수기술에 관한 연구)

  • Lee, Hyung-Jun;Choi, Sung-Min;Kim, Sung-Sik;Ahn, Sang-Ku;Cho, Ah-Hyung;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.597-600
    • /
    • 2008
  • In this study the reason which researches the feature of the exposure type waterproofing it uses the technique of the soft FRP it uses the soft unsaturated polyester and the square groove cutting technique with respects and solves the interface separate problem because of the rigid FRP it is used with the repairs and retrofit materials it is caused by in adhesion of concrete insufficiency. The feature of this technique was the dispersion and the reinforcement of the fatigue stress due to the integration behavior and the reinforcement due to the glass-fibre of the concrete due to the soft FRP resin and, it investigated the crack appearance confrontation of concrete and the cohesion stability of the concrete due to the square groove cutting technique with importance. The result of research when it applies the soft FRP with the exposure type waterproofing, is judged with the fact that it will be able to expect a bulge resistance confrontation and creak confrontation ability and cohesion stability improvement.

  • PDF

Influence of Cement Matrix's Compressive Strength and Replacement of Expansive Admixture on the Mechanical Properties of Synthetic Polyethylene (PE) Fiber-Reinforced Strain-Hardening Cement-Based Composites (SHCCs) (압축강도와 팽창재 대체에 따른 폴리에틸렌 합성섬유로 보강된 변형 경화형 시멘트 복합체의 역학적 특성)

  • Song, Young Jae;Yun, Hyun Do;Min, Byung Sung;Rokugo, Keitetsu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • In order to improve the dimensional stability and mechanical performance of cement-based composites, the effect of an expansive admixture based on calcium sulphoaluminate (CSA) on the shrinkage and mechanical properties of strain-hardening cement-based composite (SHCC), which exhibits multiple cracks and pseudo strain-hardening behavior in the direct tension, is investigated. Polyethylene fibers reinforced SHCC mixtures with three levels (30, 70, and 100MPa) of compressive strength were compared through free shrinkage, compressive strength, flexural strength, and direct tensile strength measurements. The SHCC mixtures were cast with and without replacing 10% of Portland cement content with CSA admixture. According to test results, CSA admixture is effective in reducing shrinkage of SHCC material. SHCC mixture with CSA admixture exhibited a little higher strength than companion mixture without CSA admixture.

Fabrication of Fibroin Microspheres and Hollow Spheres (피브로인 미립구 및 중공미립구의 제조)

  • Park, Cheol-Wan;Lee, Shin-Young;Hur, Won
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.321-325
    • /
    • 2010
  • Fibroin is a biopolymer available in large quantity from silk fiber and has a long history of use as a suture proving biocompatibility. In this report, fibroin microspheres has been fabricated for biomaterial applications. W/O emulsion of regenerated fibroin droplets in a continuous phase of decane with mixed surfactants was dried to facilitate fibroin gelation and the condensed fibroin microspheres were harvested. The ratio of mixed surfactants and their proportions to decane were determined to prepare a stable W/O emulsion. A spherical form of fibroin gels was obtained from the W/O emulsion agitated at 600 rpm. Scanning electron microscopy revealed that number average sizes of the fibroin microspheres were 21.6 and 8.5 ${\mu}m$ when dried under ambient conditions or under vacuum, respectively. Tomography of the spheres revealed that their internal structures are packed or hollowed. Hollow and hemispherical forms of microspheres were also prepared by using porogen.

Preparation of Waterborne Polyurethanes Containing Polycarbonate Component and Their Applications to the Impregnation Finishing for Artificial Leathers (폴리카보네이트 성분을 포함하는 수분산 폴리우레탄의 제조와 인공피혁 함침가공에의 응용)

  • Lee, Kyoung-Woo;Ko, Jae-Hoon;Shim, Jae-Yun;Kim, Young-Ho
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.175-182
    • /
    • 2009
  • Waterborne polyurethanes (WPUs) based on isophorone diisocyanate and mixed polyols of poly(tetramethylene glycol) (PTMG)/polycarbonate diol (PCD) were synthesized. The variation of mechanical and dyeing properties and alkali resistance of the WPU films were analyzed according to the polycarbonate (PC) content. The tensile strength of the films increased and the elongation at break decreased with the PC content in the WPU film. The incorporation of PC component in the WPU film did not affect the alkaline hydrolysis behavior. The synthesized WPU solutions were used as impregnating resins for the production of PET artificial leathers. The prepared WPU resins showed the good color fastness to washing, rubbing, and light of the artificial leather fabrics. The improvement of the properties became greater with the PC content in the WPU resin.

Microstructure Analysis of Cement Composite containing PMHS Emulsion to Improve Hydrophobic (소수성 증진을 위한 PMHS 유액 혼입 시멘트 복합체의 미세구조 분석)

  • Kim, Younghwan;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.25-32
    • /
    • 2021
  • For developing the durable eco-concrete, water-repellent and hydrophobic emulsion were prepared by stirring and mixing polymethyl hydrosiloxane and polyvinyl alcohol. After adding the PMHS emulsion cement paste, the hydration reaction characteristics and the change in chemical composition were analyzed through BSE and EDS analysis, and the micropores were evaluated by MIP test. Cement mixed with PMHS emulsion was analyzed to increase the hydration reactivity and to decrease the capillary porosity, but it was found that the capillary porosity varies depending on the degree of dispersion of the emulsion in the cement paste. In the case of the emulsion containing metakaolin, there was little difference in hydration degree and porosity from the case of using only the PMHS emulsion. However, when the cement surface was coated with PMHS emulsion, the contact angle was found to increase significantly compared to OPC, and it was analyzed that especially when PVA fiber was used together, it changed to a hypohydrophobic surface.

Heating Transferring Charcteristics of Cement Mortar Block with Waste CNT and Conduction Activator (폐CNT와 전도촉진재를 혼입한 시멘트 모르타르 블록의 발열 전도 특성)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.176-183
    • /
    • 2022
  • High-purity waste CNTs were mixed into cement mortar to manufacture heat-generating concrete that can use low voltage power, and carbon fiber and waste cathode materials were also used improve the conductivity of the mortar. The waste CNTs were analyzed to have a high concentration of multi-walled CNTs, and substituted liquid type waste CNTs were used during mortar mixing in order to increase dispersibility. The temperature change of the mortar with CNT was evaluated when using electric power below DC 24 V in order to utilize a small self-generation facility such as small solar power module when the mortar heats up and to minimize electromagnetic waves. When liquid-type waste CNTs were applied and a voltage of DC 24 V was introduced, it rose to 60 ℃ in a 200 × 100 × 50 mm mortar block specimen. The field applicability of self heating mortar with waste CNT was sufficient and also the amount of change in heat energy in mortar with liquid type waste CNT, carbon fiber and waste cathode materials is more effective compared to it of other variables.

Tension-Stiffening Model and Application of Ultra High Strength Fiber Reinforced Concrete (초고강도 강섬유보강 철근콘크리트의 인장강화 모델 및 적용)

  • Kwak, Hyo-Gyoung;Na, Chaekuk;Kim, Sung-Wook;Kang, Sutae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.267-279
    • /
    • 2009
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber reinforced concrete (UHSFRC) structures subjected to monotonic loading is introduced. The material properties of UHSFRC, such as compressive and tensile strength or elastic modulus, are different from normal strength reinforced concrete. The uniaxial compressive stress-strain relationship of UHSFRC is designed on the basis of experimental result, and the equivalent uniaxial stress-strain relationship is introduced for proper estimation of UHSFRC structures. The steel is uniformly distributed over the concrete matrix with particular orientation angle. In advance, this paper introduces a numerical model that can simulate the tension-stiffening behavior of tension part of the axial member on the basis of the bond-slip relationship. The reaction of steel fiber is considered for the numerical model after cracks of the concrete matrix with steel fibers are formed. Finally, the introduced numerical model is validated by comparison with test results for idealized UHSFRC beams.