• Title/Summary/Keyword: 섬유보강토

Search Result 59, Processing Time 0.026 seconds

Friction Characteristics on Interface Between Reinforcement and Sand by Direct Shear Test Methods (전단시험방법에 따른 토목섬유/모래 접촉면에서의 마찰특성)

  • Ju, Jae-Woo;Park, Jong-Beom;Chang, Yong-Chai
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 2003
  • The most important part in the earth reinforcement is the interface between soil and the reinforcement. Shear strength and shear behavior in this interface make a great role relating to the reinforcement effect. This paper presents 2 kinds of direct shear test methods. one is the strain free shear test, called 'free method', that is performed by the free condition of allowing tensile strain. The other is the strain fix shear test, called 'fixed method', that is performed by the fixed condition of not allowing tensile strain. Two reinforcements were used such as nonwoven geotextile and geogrid. That is, interfaces are composed of geogrid/sand and geotextile/sand. From the test results it shows us that the fixed method had a greater friction angle and a smaller peak shear strain than those of the free method. Residual stress of the fixed method was bigger than that of the free method but the residual stress ratio was vice versa.

  • PDF

Site Monitoring of the Retaining Wall Reinforced by Geogrids with Block Type Facings (지오그리드 보강토 옹벽의 계측평가)

  • Kim, Jin-Man;Lee, Dae-Young;Ma, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.106-114
    • /
    • 2006
  • Uses of geosynthetics as a reinforcing material for earth structures have ever increased due to their excellent economy. fine external appearance. and easy construction. In the current practice of geosynthetics. however, the lacks of the standardized method of evaluating the soil/geosynthetics friction properties and the inconsistency of conventional design methods develop confusion to the civil engineers. The purpose of site monitoring of the retaining wall reinforced by geogrids was to evaluate the applicability of existing design methods to, and performance of. CHAMSTONE wall system. Full scale field performance during and after construction was monitored by incorporating instrumentation including strain gauges on the geogrid and soil pressure cells. The difference of the reinforcing effects of geosynthetics embedded in the soil will be also investigated by comparing of the line and curve types of retaining wall reinforced by geogrids with block type facings.

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF

Assessment of Long-Term Performance of Geotextiles by Field Test (현장시험에 의한 지오텍스타일의 장기성능 평가)

  • 전한용;안양님;유중조;류원석
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.366-367
    • /
    • 2003
  • 토목합성재료의 내후성은 사용되는 원료 물질, 기후조건, 하중조건, 노출 기간 등에 따라 상이한 결과를 나타내며, 이러한 영향인자에 대한 많은 연구가 국내외적으로 이루어졌으나 이는 각 적용지역의 환경조건을 고려하여 실시된 경우로 지역적인 조건과 기후 차이로 국내 여건에 적합한 데이터라 할 수 없다. 본 연구에서는 임시구조물로 적용된 분리형 보강토 옹벽의 전면체를 형성하는 부직포 지오텍 스타일에 대해 현장 적용 노출시험을 실시하였으며 약 1년 간의 지속적인 계측을 통해 실제 국내 현장에서 나타나는 부직포 지오텍스타일의 내후성 거동에 대해서 평가하였다. (중략)

  • PDF

Shear Strength Characteristics of Unconsolidated-Undrained Reinforced Decomposed Granite Soil under Monotonic and Cyclic Loading (정.동적 하중에 의한 비압밀비배수 보강화강풍화토의 전단강도 특성)

  • Cho, Yong-Sung;Koo, Ho-Bon;Park, Inn-Joon;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.13-21
    • /
    • 2006
  • When enforced earth is used for the retain wall and four walls, the most important thing would be how to maximize the land utilization. Accordingly, in case of enforced earth, we pile up the minimal height of earth ($20{\sim}50\;cm$) and harden the earth using a static dynamic hardening machine. In this paper, we tried to analyze and compare the stress transformation characteristics of reinforced weathered granite soil with geosynthetics when repetitive load is added to the enforced earth structure and when static load is added. The result is that the cohesion component of the strength increased greatly and the friction component decreased slightly.

A Large Slipping Finite Element Model for Geosynthetics Interface Modeling

  • Yi, Chang-Tok
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.35-48
    • /
    • 1996
  • Reinforced soil structures may experience large local movements between soil and reinforcement. The failure modes of a reinforced structure depend on several factors which are governed by deformation and slipping of the reinforcement. In some cases, pulling out of the reinforcement may occur instead of rupturing, The growing use of geosynthetic liner system for storage of solid and liquid wastes has led to a number of slope instability problems where the synthetic liner may undergo a large amount of stretching and slipping as a result of the loading. The conventional finite element model for the soil-reinforcement interface uses a zero thickness joint element with normal and shear stiffnesses and can only accommodate a small amount of deformation. When a large slippage occurs, the model provides an i ncorrect mechanism for deformation. This paper presents a new interface finite element model which is able to simulate a large amount of slippage between soil and reinforcement. The formulation of the model is presented and the capability of the model is demonstrated using illustrative examples.

  • PDF

Comparison of Behaviour of Straight and Curved Mechanically Stabilized Earth Walls from Numerical Analysis Results (수치해석을 통한 보강토옹벽 직선부와 곡선부의 거동 특성)

  • Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.83-92
    • /
    • 2017
  • This paper deals with numerical analysis of behavior of curved mechanically stabilized earth(MSE) walls with geosynthetics reinforcement. Unlike typical concrete retaining walls, MSE wall enables securing stability of higher walls without being constrained by backfill height and is currently and widely used to create spaces for industrial and residential complexes. The design of MSE walls is carried out by checking external stability, similarly to the external checks of conventional retaining wall. In addition, internal stability check is mandatory. Typical stability check based on numerical analysis is done assuming 2-dimensional condition (plane strain condition). However, according to the former studies of 3-dimensional MSE wall, the most weakest part of a curved geosynthetic MSE wall is reported as the convex location, which is also identified from the studies of the laboratory model tests and field monitoring. In order to understand the behaviour of the convex location of the MSE wall, 2-dimensional analysis clearly reveals its limitation. Furthermore, laboratory model tests and field monitoring also have restriction in recognizing their behaviour and failure mechanism. In this study, 3-dimensional numerical analysis was performed to figure out the behaviour of the curved part of the geosynthetic reinforced wall, and the results of the straight-line and curved part in the numerical analysis were compared and analysed. In addition, the behaviour characteristics at each condition were compared by considering the overburden load and relative density of backfill.

Effect of Stability of Reinforced Wall within Drain Layers in the Rainfall (강우시 보강토 내부 배수가 보강토 옹벽의 안정성에 미치는 영향)

  • Sin, Chun-won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.165-174
    • /
    • 2017
  • There are natural disasters caused by abnormal climate in the world. In particular, there are frequent disasters such as floods and landslides caused by rainfall in summer. Rainfall will have a major impact on the stability of a retaining wall. If drainage during rainfall activities within the retaining wall is not made properly, permeated water brings a significant increase in pore pressure inside of the backfill soil and reduces the shear strength of the soil. Therefore, research how to install the drainage layers to reduce the infiltrated water inside of the backfill soil is very necessary. In this study, we performed a numerical modeling to find the optimum installation conditions of the location and number of drainage layer related to stability of the reinforced retaining wall during rainfall installed geosynthetics.