• 제목/요약/키워드: 섬유강화 플라스틱

검색결과 222건 처리시간 0.025초

쌍동선의 설계규정 검토를 위한 규정 비교 및 구조 해석 (Comparison Study and Structural Analysis to Investigate the Design Rule and Criteria of Catamaran)

  • 김병종;권수연;김성찬;이장현
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.479-489
    • /
    • 2011
  • Leisure boat and yacht should be designed to meet the domestic regulation and international standards as large merchant vessels do. Recently, each countries are encouraged to follow the regulation of International standards organization. Furthermore domestic organization has not yet announced the design rule and regulation for FRP-catamaran yacht design. Therefore, it has been required to make the regulation for domestic situations of FRP-catamaran. This study deals with the structural strength evaluation of 50ft catamaran by using finite element analysis. Design load of the regulation of International standards organization are compared with the regulation of Korea Register of shipping and Lloyd's Register.

복합재 반자율 무인잠수정(SAUV)의 내압선체 설계 및 구조해석 (A Pressure Vessel Design and Structural Analysis of a Semi-Autonomous Underwater Vehicle(SAUV))

  • 정태환;이종무;홍석원;안진우;김태욱;김진봉
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.34-39
    • /
    • 2002
  • A Semi-Autonomous Underwater Vehicle (SAUV) capable of simple work at sea bed is under development in KRISO-KORDI. A pressure vessel of SAUV which is composed of FRP was manufactured to load electronic equipments. The objective of this paper is to verify the safety of the pressure vessel through conducting the structural analysis and test in pressure tank. Strain and stress under unit load were obtained by using ANSYS in the linear structural analysis. And local buckling analysis was performed with NASTRAN for the middle cylindrical hull. For the pressure test, strains were measured at three point. We found that the results by linear structural analysis and experiment are coincide well at the points where buckling does not occur. Maximum depth was estimated to be 250m by the local buckling analysis.

  • PDF

유리섬유 강화 플라스틱 절삭에서의 공구마멸특성 (Characteristics of tool wear in cutting of glass fiber reinforced platics (GFRP))

  • 이원평
    • 오토저널
    • /
    • 제9권5호
    • /
    • pp.49-56
    • /
    • 1987
  • This paper is a study on the effect of the cutting speed on the tool wear in turning of the glass fiber reinforced plastics. The wear behavior of cutting tool is studied by means of turning, changing the cutting speed and feed in the wide range. Moreover, the theoretical model applicable to the cutting speed of wide range is analysed. The main results obtained are as follows: The relation between the tool wear and the cutting speed is divided into three range in case of the constant cutting distance. 1) At the low cutting speed, the tool wear is independent of the cutting speed, but dependent mainly on the contact length between tool and glass fiber(lst range). 2) At the high cutting speed, the tool wear is independent of the contact length, and dependent on the cutting speed only(2nd range). The tool wear increases in proportion to the cutting speed. 3) At the higher cutting speed than the speed in the 2nd range, the tool wear is independent both of the cutting speed and the contact length(3rd range). 4) In the 3rd range, tool flank wear is constant and is observed that only the wear of cutting edge increases.

  • PDF

복합재료 FRP로 제작된 Rotor Blade 진동특성 분석에 관한 실험적 연구 (An Experimental Study on the Vibrational Characteristics of the Rotor Blade with Fiber Reinforced Plastics)

  • 백진성;이강수;박종빈;이정탁;손충렬
    • 한국소음진동공학회논문집
    • /
    • 제15권11호
    • /
    • pp.1232-1240
    • /
    • 2005
  • The purpose of this paper is that investigates the dynamic behavior characteristic of W.T.S (wind turbine system) and carries out the evaluation analysis during operating W.T.S. To investigate the dynamic behavior characteristic of W.T.S, the experiments to measure vibration of the blade from the attached accelerometer on the flap and edge section of the blade that is one of the most important elements of dynamic characteristic of W.T.S are performed. Natural frequency and mode shape are calculated with commercial program ( ANSYS) using the measured vibration acceleration that receives the signal with F.F.T Analyzer from the accelerometer For validation of these experiments, the finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape. The results indicate that experimental values have good agreements with the finite element analysis.

경사단을 갖는 Steel 및 복합재료 원통쉘의 자유진동 특성에 관한 연구 (A Study on Free Vibration of Steel and Composite Cylindrical Shells with an Oblique Angle)

  • 이장원;최영진;이영신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.928-933
    • /
    • 2004
  • The vibration characteristic is a primary design factor. The cylindrical shells are used as a primary components of complex structure. also, The cylindrical shells have oblique angle. In this study, The vibrational characteristics of steel and plain wave GFRP cylindrical shell with an oblique end are given by experimental and finite element method. To be find characteristic of the oblique end, the mass of the cylindrical shell is maintained. Natural frequency and mode shapes of isotropic and plain weave composite shells are obtained by modal test. The results are compared with those of the finite element method. The simply supported boundary conditions with bolts along the circumferential direction of the GFRP shell are well achieved. Also, The clamped boundary conditions is applied to the steel specimen. Those are shown to agree well with the analytical results and finite element analysis results.

  • PDF

40ft급 세일링 요트의 전산해석을 통한 구조안전성 평가 (Structural Safety Evaluation of 40 Feet Sailing Yacht by Computational Structure Analysis)

  • 지상현;노지선;강성원;김헌우;김명현
    • 대한조선학회논문집
    • /
    • 제47권5호
    • /
    • pp.703-708
    • /
    • 2010
  • Recently, the development of the Marina port is determined as a national plan, and a variety of leisure boats and facilities on the field has been of critical interest. In particular, yachts are designed and produced mostly at small shipbuilding companies and research institute. The regulation and historic data, however, about the safety of structure are not readily available. Therefore, it is required to evaluate the strength of ship structure. This paper deals with the estimation of local strength of 40 feet sailing yacht by using finite element analysis. The forebody, mast and connection parts of a FRP yacht structure are evaluated. In addition, the results are compared with the regulation of Lloyd's register and Korean register.

내부 기공이 극저온에서 접착강도에 미치는 영향에 대한 실험적 고찰 (Experimental examination for effect of voids on bonding performance in cryogenic temperature condition)

  • 손민영;김종호;김종학
    • Composites Research
    • /
    • 제22권2호
    • /
    • pp.14-17
    • /
    • 2009
  • 접착제에 의한 접합기술은 다양한 목적과 환경에서 널리 사용되는 방법이다. 그 중 우레탄 접착제는 액화천연가스 운반선과 같이 극저온에서 사용되는 환경에서의 접착에 사용되고 있다. 현장 적용에 있어, 본 접착제를 사용시 경화된 접착제 층의 기공들이 발생하게 된다. 본 연구에서는 우레탄 접착제와 Triplex 복합재료 접착에 있어 인공적으로 기공을 제작 삽입 후 전단응력 (Single Lap Shear) 시험을 실시하여 그 영향을 검토하였다. 실험 결과 접착력은 본 시험에서 적용한 기공의 크기 및 위치에 영향을 받지 않는다는 것을 확인하였다.

열처리된 Pine/탄소섬유 복합재료의 기계적 및 계면물성 향상을 위한 최적 조건 (Optimum Conditions for Improvement of Mechanical and Interfacial Properties of Thermal Treated Pine/CFRP Composites)

  • 신평수;김종현;박하승;백영민;권동준;박종만
    • Composites Research
    • /
    • 제30권4호
    • /
    • pp.241-246
    • /
    • 2017
  • 취성을 가진 섬유강화플라스틱은 충격을 받을 때 충격에너지를 흡수하면서 섬유와 기지재 간 계면에서 탈착 및 박리가 일어난다. 이는 복합재료의 에너지 충격흡수정도의 지표로 삼을 수 있다. 복합재료의 취성을 해결하기 위해 pine과 복합재료의 접착에 대한 연구가 되어 지고 있다. 이번 연구에서는 열처리 된 pine이 탄소섬유강화복합재료와 에폭시 접착제를 이용하여 접착되었다. 최적의 열처리 조건을 확인하기 위해, pine을 160도 및 200도 조건하에 열처리를 하였다. Pine 및 pine/탄소섬유복합재료의 기계적 및 계면물성을 파악하기 위해 인장, 인장중첩전단 및 아이조드 실험을 하였다. 또한, 열처리에 따른 나뭇결간의 결합력을 확인하기 위해 나뭇결 수직방향으로 인장시편 제조 후 파단될 때 탄성파를 음향방출시스템을 이용하여 분석하였다. 160도 조건으로 열처리 했을 때 나무강화 효과로 기계, 계면 및 나뭇결간의 결합력이 좋은 것을 확인하였다. 그러나 과한 열을 주게 되면 열에 약한 헤미셀룰로오스가 분해되면서 잡아주는 인자가 줄어들어 물성이 감소하였다.

유리섬유를 이용한 하수관의 고강도 현장경화 비굴착 보수 공법 재료의 개발 및 물성 특성 연구 (Study of structural properties and development of high strength Cured-In-Place Pipe (CIPP) liner for sewer pipes using glass fiber)

  • 지현욱;;유성수;강정희
    • 상하수도학회지
    • /
    • 제34권2호
    • /
    • pp.149-159
    • /
    • 2020
  • Cured-in-place-pipe(CIPP) is the most adopted trenchless application for sewer rehabilitation to extend the life of the existing sewer without compromising both direct construction and indirect social costs especially applied in the congested urban area. This technology is globally and domestically known to be the most suitable for partial and full deteriorated pipe structure rehabilitation in a sewer system. The typical design of CIPP requires a significant thickness of lining to support loading causing sewage flow interruption and increasing material cost. This paper presents development of a high strength glass fiber composite lining material for the CIPP application and structural test results. The test results exhibit that the new glass fiber composite lining material has 12 times of flexural strength, 6.2 times of flexural modulus, and 0.5 Creep Retention Factor. These test results can reduce lining design thickness 35% at minimum. Even though taking into consideration extra materials such as outer and inner films for actual field applications, the structural capacity of the composite material significantly increases and it reduces 20 percent or more line thickness as compared to the conventional CIPP. We expect that the newly developed CIPP lining material lowers material costs and minimizes flow capacity reduction, and fully replaceable to the conventional CIPP lining materials.

FRP 기계적 물성을 고려한 복합소재 선체구조 적층판 경량화 설계 (Laminate Weight Optimization of Composite Ship Structures based on Experimental Data)

  • 오대균;;노재규;정숙현
    • 대한조선학회논문집
    • /
    • 제57권2호
    • /
    • pp.104-113
    • /
    • 2020
  • The study aims to improve the previous theory-based algorithm on the lightweight design of laminate structures of a composite ship based on the mechanical properties of fiber, resin, and laminates obtained from experiments. From a case study on using a hydrometer to measure the specific gravity of e-glass fiber woven roving fabric/polyester resin used as the raw material for the hull of a 52 ft composite ship, the equation for calculating the weight of laminate was redefined, and the relationship between decreasing mechanical properties and increasing glass content was determined from the results of material testing according to ASTM D5083 and ASTM D790. After applying these experimental data to the existing algorithm and improving it, a possible laminate design that maximizes the specific strength of the composite material was confirmed. In a case study that applied the existing algorithm based on rules, the optimal lightweight design of composite structures was achieved when the weight fraction of e-glass fiber was increased by 57.5% compared with that in the original design, but the improved algorithm allowed for an increase of only 17.5%.