• 제목/요약/키워드: 설계알고리즘

검색결과 7,321건 처리시간 0.035초

토양생태 등급 정보가 친환경도로노선 선정에 미치는 영향에 관한 민감도 분석 (Sensitivity Analysis of the Effect of Soil Ecological Quality Information in Selecting Eco-Friendly Road Route)

  • 기동원;강호근;이상은;허준;박준홍
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제13권3호
    • /
    • pp.37-44
    • /
    • 2008
  • 국토개발사업의 사전 계획 과정에서 개발할 것인지 보전할 것인지에 대한 의사결정은 인간 활동에 영향을 줄 수 있는 편리함과 이익을 고려해야 할 뿐만 아니라, 자연환경생태에 미칠 수 있는 영향을 종합적으로 예측하고 평가할 수 있는 자료기반 및 통합적 평가기법을 요구한다. 동식물생태와 지형경관요소들은 환경부의 생태자연도를 통해서 환경영향평가에 현재 활용되고 있지만, 자연생태의 주요 구성요소 중 하나인 토양생태는 정량적인 자료와 지형정보와 연계된 정보의 부재로 환경영향평가에서 고려되지 못하고 있다. 본 연구에서는 토양생태를 포함한 자연환경과 생활환경 요소들을 망라해서 총체적 환경성을 평가할 수 있는 수치지도를 작성하고 토양생태 등급의 가중치가 친환경도로 노선 선정에 미치는 영향에 대해서 민감도 분석을 수행하였다. 그 결과 자연환경 요소들 중 토양생태의 가중치가 14% 이상 만 되어도 최적 친환경노선 선정에 민감하게 영향을 미쳤다. 본 연구의 결과를 통해서 이제까지 환경영향 평가에서 무시되어 오던 토양생태 정보가 친환경 건설개발사업의 계획 및 기초설계 단계에서 중요하게 고려되어야 할 생태요소임을 입증할 수 있었다.

딥뉴럴네트워크 기반의 흡연 탐지기법 설계 (Design of detection method for smoking based on Deep Neural Network)

  • 이상현;윤현수;권현
    • 융합보안논문지
    • /
    • 제21권1호
    • /
    • pp.191-200
    • /
    • 2021
  • 컴퓨팅 기술의 발전과 데이터를 저장할 수 있는 클라우드 환경, 그리고 스마트폰의 보급으로 인하여 많은 데이터가 생산되는 환경에서 인공지능 기술이 발전되고 있다. 이러한 인공지능 기술 중에서 딥뉴럴네트워크는 이미지 인식, 이미지 분류 등에서 탁월한 성능을 제공하고 있다. 기존에는 이러한 딥뉴럴네트워크를 이용하여 산불 및 화재 예방을 위한 이미지 탐지에 대해 많은 연구가 있었지만 흡연 탐지에 대한 연구는 미흡한 실정이었다. 한편 군 부대에서는 각종 시설에 대한 감시체계를 CCTV를 통해 구축하고 있는데 화재, 폭발사고 예방을 위해 탄약고 주변에서의 흡연이나 금연구역에서의 흡연을 CCTV로 탐지하는 것이 필요한 상황이다. 본 논문에서는 딥뉴럴네트워크를 이용하여 흡연 여부를 탐지하는 방법에 대한 성능 분석을 하였으며 활성화함수, 학습률 등 실험적으로 최적화된 수치를 반영하여 흡연사진과 비흡연사진을 두 가지 경우로 탐지하는 것을 하였다. 실험 데이터로는 인터넷 상에 공개되어 있는 흡연 및 비흡연 사진을 크롤링하여 데이터를 구축하였으며, 실험은 머신러닝 라이브러리를 이용하였다. 실험결과로 학습률 0.004로 최적화 알고리즘 Adam을 사용하였을 때, 93%의 accuracy와 92%의 F1-score를 갖는 것을 볼 수 있었다. 또한 이로써 이미지의 연속인 CCTV 영상도 딥뉴럴네트워크를 이용하여 흡연 여부를 탐지할 수 있음을 알 수 있었다.

고속 해상 객체 분류를 위한 양자화 적용 기반 CNN 딥러닝 모델 성능 비교 분석 (Comparative Analysis of CNN Deep Learning Model Performance Based on Quantification Application for High-Speed Marine Object Classification)

  • 이성주;이효찬;송현학;전호석;임태호
    • 인터넷정보학회논문지
    • /
    • 제22권2호
    • /
    • pp.59-68
    • /
    • 2021
  • 최근 급속도로 성장하고 있는 인공지능 기술이 자율운항선박과 같은 해상 환경에서도 적용되기 시작하면서 디지털 영상에 특화된 CNN 기반의 모델을 적용하는 관련 연구가 활발히 진행되고 있다. 이러한 해상 서비스의 경우 인적 과실을 줄이기 위해 충돌 위험이 있는 부유물을 감지하거나 선박 내부의 화재 등 여러 가지 기술이 접목되기에 실시간 처리가 매우 중요하다. 그러나 기능이 추가될수록 프로세서의 제품 가격이 증가하는 문제가 존재해 소형 선박의 선주들에게는 비용적인 측면에서 부담이 된다. 또한 대형 선박의 경우 자율운항선박의 시스템을 감안할 때, 연산 속도의 성능 향상을 위해 복잡도가 높은 딥러닝 모델의 성능을 개선하는 방법이 필요하다. 따라서 본 논문에서는 딥러닝 모델에 경량화 기법을 적용해 정확도를 유지하면서 고속으로 처리할 수 있는 방법에 대해 제안한다. 먼저 해상 부유물 검출에 적합한 영상 전처리를 진행하여 효율적으로 CNN 기반 신경망 모델 입력에 영상 데이터가 전달될 수 있도록 하였다. 또한, 신경망 모델의 알고리즘 경량화 기법 중 하나인 학습 후 파라미터 양자화 기법을 적용하여 모델의 메모리 용량을 줄이면서 추론 부분의 처리 속도를 증가시켰다. 양자화 기법이 적용된 모델을 저전력 임베디드 보드에 적용시켜 정확도와 처리 속도를 사용하는 임베디드 성능을 고려하여 설계하는 방법을 제안한다. 제안하는 방법 중 정확도 손실이 제일 최소화되는 모델을 활용해 저전력 임베디드 보드에 비교하여 기존보다 최대 4~5배 처리 속도를 개선할 수 있었다.

머신러닝을 이용한 시각장애인 도로 횡단 보조 임베디드 시스템 개발 (Development of Street Crossing Assistive Embedded System for the Visually-Impaired Using Machine Learning Algorithm)

  • 오선택;정기동;김호민;김영근
    • 한국HCI학회논문지
    • /
    • 제14권2호
    • /
    • pp.41-47
    • /
    • 2019
  • 본 연구는 시각장애인들이 도로를 안전하게 횡단할 수 있도록 신호등 인식 및 음성안내를 제공해주는 임베디드 시스템의 설계를 제안한다. 시각장애인에게 독립보행은 큰 어려움으로 작용하고 있으며, 독립보행의 제한은 그들의 삶의 질을 저하시키는 요인으로 작용하고 있다. 도로횡단에서의 신호등 인식과 도로 및 차로의 구분 불가는 시각장애인의 독립보행을 방해하는 가장 큰 요인 중 하나이다. 본 연구에서 제안하는 스마트기기는 안경에 달린 초소형 카메라로 GPU 보드에 탑재된 머신러닝 알고리즘을 이용하여 보행자 신호등을 검출 및 인식하며, 음성 안내를 유저에게 전달해준다. 휴대성을 위하여, 기기는 충분한 배터리 수명과 함께 소형 및 가볍게 디자인되었다. 또한, 안경 다리에는 외부 소리를 막지 않으면서 음성 안내를 전달해주는 골전도 스피커가 부착되어 있다. 본 연구에서 제안하는 스마트기기는 실험을 통하여 보행자 신호의 초록 신호에 대하여 87.0%의 검출율(recall)과 100%의 정확도(precision)를 가지며, 빨간 신호에 대하여, 94.4%의 검출율(recall) 값과 97.1%의 정확도(precision)를 가지는 것으로 유효성을 확인하였다.

선박 엔진의 상태감시 기반 고장진단 기술 개발에 관한 연구 (A Study for the Development of Fault Diagnosis Technology Based on Condition Monitoring of Marine Engine)

  • 박재철;장화섭;조연화
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2019년도 춘계학술대회
    • /
    • pp.230-231
    • /
    • 2019
  • 본 연구에서는 미래의 자율운항선박의 핵심기술인 상태기반 예지보전(Condition Based Maintenance, CBM) 기술에 관한 연구로써 고장진단을 위한 실 운항선박을 대상으로 상태 모니터링 시스템의 설계/탑재 및 데이터 취득/처리/분석 기술 개발을 수행하고 있다. 본 연구의 목적은 데이터 확보, 유효데이터 식별/검증을 통해 최종적인 고장진단 알고리즘 개발을 위함이며 이를 위해서는 대상 기기의 고장 메커니즘에 관한 이해가 필요하다. 따라서 선박 엔진의 FEMA 분석과 Fault Tree Analysis 과정이 수반되어야 하며 엔진의 주요 계통분류, 대상기기 식별, 고장유형, 고장원인과 현상에 대한 분석을 포함하여야 한다. 최종적으로 도출되는 CBM 시스템의 솔루션 S/W는 엔지니어링 지식기반의 실선 운항데이터에 대한 통합적인 데이터 분석을 통해 선박 엔진의 고장예측 및 진단이 가능하다. 본 연구를 통해 운항중인 실선의주 기관을 대상으로 기존 모니터링 항목 이외의 핵심 영향인자를 측정하고, 취득된 데이터에 대한 빅 데이터 분석기법을 통해 적절한 유지보수 방법과 해당 시점을 예측함으로써 향후 선박 엔진의 이상 징후에 대한 사전적 대처와 효율적인 관리가 가능하며 결과적으로 항해 중 해양사고 및 선박운항 손실을 미연에 방지할 수 있을 것으로 기대한다.

  • PDF

향상된 음향 신호 기반의 음향 이벤트 분류 (Enhanced Sound Signal Based Sound-Event Classification)

  • 최용주;이종욱;박대희;정용화
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권5호
    • /
    • pp.193-204
    • /
    • 2019
  • 센서 기술과 컴퓨팅 성능의 향상으로 인한 데이터의 폭증은 산업 현장의 상황을 분석하기 위한 토대가 되었으며, 이와 같은 데이터를 기반으로 현장에서 발생하는 다양한 이벤트를 탐지 및 분류하려는 시도들이 최근 증가하고 있다. 특히 음향 센서는 상대적으로 저가의 가격으로 현장 정보를 왜곡 없이 음향 신호를 수집할 수 있다는 큰 장점을 기반으로 다양한 분야에 설치되고 있다. 그러나 소리 취득 시 발생하는 잡음을 효과적으로 제어하지 못한다면 산업 현장의 이벤트를 안정적으로 분류할 수 없으며, 분류하지 못한 이벤트가 이상 상황이라면 이로 인한 피해는 막대해질 수 있다. 본 연구에서는 잡음 상황에서도 강인한 시스템을 보장하기 위하여, 딥러닝 알고리즘을 기반으로 잡음의 영향을 개선 시킨 음향 신호를 생성한 후, 해당 음향 이벤트를 분류할 수 있는 시스템을 제안한다. 특히, GAN을 기반으로 VAE 기술을 적용한 SEGAN을 활용하여 아날로그 음향 신호 자체에서 잡음이 제거된 신호를 생성하였으며, 향상된 음향 신호를 데이터 변환과정 없이 CNN 구조의 입력 데이터로 활용한 후 음향 이벤트에 대한 식별까지도 가능하도록 end-to-end 기반의 음향 이벤트 분류 시스템을 설계하였다. 산업 현장에서 취득한 음향 데이터를 활용하여 제안하는 시스템의 성능을 실험적으로 검증한바, 99.29%(철도산업)와 97.80%(축산업)의 안정적인 분류 성능을 확인하였다.

지정맥 인식 시스템을 이용한 심박신호 검출 (Heart Rate Signal Extraction by Using Finger vein Recognition System)

  • 복진영;서건하;이의철
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제9권6호
    • /
    • pp.701-709
    • /
    • 2019
  • 최근에 헬스케어와 관련된 다양한 분야에서 생체신호 중 하나인 심박신호가 사용되고 있다. 기존에 제안된 심박신호 검출 방법으로는 접촉식 방법이 대부분이었지만, 피사체가 장치를 접촉하고 있어야 한다는 불편함의 문제가 있었다. 이를 해결하기 위해 최근 비접촉식 방법에 의한 검출 연구가 진행되고 있다. 본 논문에서는 지정맥 인식을 위해 설계된 손가락 영상 촬영 장치를 이용해 심박 유사 신호를 얻어내는 방법을 제안한다. 검출된 심박 유사 신호는 지정맥의 위조 여부 판단과 심박 신호를 통한 다양한 응용분야에 활용될 수 있다. 제안하는 방법은 적외선을 이용한 지정맥 영상의 시간 도메인상의 밝기 값의 변화로부터 신호를 검출하고 영상처리 기반 알고리즘을 이용해 주파수 도메인으로 변환하였다. 변환 후, 대역 통과 필터링을 통해 심박신호와 관련이 없는 노이즈를 제거하였다. 신호의 정확성을 판단하기 위해 지정맥 획득 장치와 식품의약품안전처로부터 승인을 받은 접촉식 PPG 센서를 이용해 동시에 취득된 두 신호의 상관관계를 분석하였다. 결과적으로, 지정맥 영상을 통해 비접촉식으로 검출된 심박신호가 실제 심박신호의 파형과 일치함을 확인하는 것이 가능했다.

A Study on the Classification of Unstructured Data through Morpheme Analysis

  • Kim, SungJin;Choi, NakJin;Lee, JunDong
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.105-112
    • /
    • 2021
  • 빅데이터 시대에 접어들며 데이터에 대한 관심이 폭발적으로 늘어나고 있다. 특히, 인터넷 및 소셜미디어의 발전은 새로운 데이터들의 생성으로 연결되어 빅데이터와 인공지능 시대의 실현과 융합 기술의 새로운 장을 열 수 있게 되었으며, 과거에는 프로그램으로 다루지 못하던 데이터에 대한 분석 요구가 많이 발생하고 있다. 본 논문에서는 빅데이터 시대에서 많이 요구되는 비정형 데이터에 대한 분류를 위하여 분석 모델을 설계하고 이를 검증하였다. 데이터는 디비피아의 논문 요약과 주제어, 그리고 부주제 어를 크롤링하였으며, 코엔엘피의 데이터 사전을 이용해 데이터베이스를 생성하고, 형태소 분석을 통하여 단어의 토큰화 과정을 수행하였다. 또한, 카이스트의 9 품사 분류 체계를 이용해 명사를 추출하고, TF-IDF 값을 생성하였으며, 학습 데이터와 Y 값을 결합하여 분석 데이터 셋을 생성하였다. 이와 같이 생성된 분석 데이터 셋에 랜덤 포레스트와 서포트 벡터 머신 그리고 의사결정트리, 이렇게 세 가지 분석 알고리즘을 적용하여 분류의 적정성을 측정하였다. 본 논문에서 제안한 분류 모델 기법은 논문 분류 외에도 민원 분류 분석 및 텍스트 관련 분석 등 다양한 분야에 유용하게 사용될 수 있다.

모듈러 건축의 타워크레인 배치계획 수립을 위한 다중 최적화 모델 개발 (Multi-objective Optimization Model for Tower Crane Layout Planning in Modular Construction)

  • 윤성부;박문서;정민혁;현호상;안수호
    • 한국건설관리학회논문집
    • /
    • 제22권1호
    • /
    • pp.36-46
    • /
    • 2021
  • 최근 모듈러 건축의 고층화와 함께 현장에서의 T/C 사용도 증가하였다. 이러한 T/C의 대수, 제원 및 위치를 결정하는 TCLP는 프로젝트의 공사비용, 공사기간, 안전, 생산성에 큰 영향을 미친다. 특히 모듈러 건축 프로젝트에서 조건에 부합하지 않는 TCLP는 추가 장비 투입, 재설계 등의 작업으로 이어져 공사기간과 공사비 증가가 발생할 수 있다. 따라서 현장관리자는 현장조건, 양중대상, T/C 제원 등 수많은 제약을 고려하여 프로젝트에 적합한 TCLP를 수립해야 한다. 하지만 다중 T/C를 사용하는 건설현장의 경우 추가적인 고려사항과 변수들로 인해 경험과 직관을 통해 TCLP를 수립하는데 어려움이 있다. 이를 위해 본 연구에서는 비용과 간섭면적의 최소화를 목적으로 하는 다중 최적화(multi-objective optimization) 알고리즘을 개발하고, 이를 활용하여 T/C 대수, 제원 및 위치를 선정하는 모델을 제안한다. 본 연구에서는 기존의 단일 최적화 방식과 달리 다중 최적화를 통한 TCLP 수립 프로세스를 제안함으로써, 비용과 간섭면적의 trade-off를 고려한 경제적이고 효율적인 프로젝트 완료를 기대할 수 있음을 보여주었다.

나눗셈 체인을 이용한 RSA 모듈로 멱승기의 구현 (Implementation of RSA modular exponentiator using Division Chain)

  • 김성두;정용진
    • 정보보호학회논문지
    • /
    • 제12권2호
    • /
    • pp.21-34
    • /
    • 2002
  • 본 논문에서는 최근 발표된 멱승방법인 나눗셈 체인을 적용한 새로운 모듈로 멱승기의 하드웨어 구조를 제안하였다. 나눗셈 체인은 제수(divisor) d=2 또는 $d=2^I +1$ 과 그에 따른 나머지(remainder) r을 이용하여 지수 I를 새롭게 변형하는 방법으로 전체 멱승 연산이 평균 약 1.4$log_2$E 번의 곱셈으로 가능한 알고리즘이다. 이것은 Binary Method가 하드웨어 구현 시 항상 worst case인 $2log_2$E의 계산량이 필요한 것과 비교할 때 상당한 성능개선을 의미한다. 전체 구조는 파이프라인 동작이 가능한 선형 시스톨릭 어레이 구조로 설계하였으며, DG(Dependence Graph)를 수평으로 매핑하여 k비트의 키 사이즈에 대해 두 개의 k 비트 프레임이 k/2+3 개의 PE(Processing Element)로 구성된 두 개의 곱셈기 모듈을 통해 병렬로 동시에 처리되어 100% 처리율을 이루게 하였다. 또한, 규칙적인 데이터 패스를 가질 수 있도록 나눗셈체인을 새롭게 코딩하는 방법을 제안하였다. ASIC 구현을 위해 삼성 0.5um CMOS 스탠다드 셀 라이브러리를 이용해 합성한 결과 최장 지연 패스는 4.24ns로 200MHz의 클럭이 가능하며, 1024비트 데이터 프레임에 대해 약 140kbps의 처리속도를 나타낸다. 복호화 시에는 CRT(Chinese Remainder Theorem)를 적용하여 처리속도를 560kbps로 향상시켰다. 전자서명의 검증과정으로 사용되기도 하는 암호화 과정을 수행할 때 공개키 E는 3,17 혹은 $2^{16} +1$의 사용이 권장된다는 점을 이용하여 E를 17 비트로 제한할 경우 7.3Mbps의 빠른 처리속도를 가질 수 있다.