• Title/Summary/Keyword: 설계시험평가

Search Result 1,945, Processing Time 0.025 seconds

Case Study on the Causes for the Failure of Large Scale Rock Mass Slope Composed of Metasedimentary Rocks (변성퇴적암류로 구성된 대규모 암반사면의 붕괴원인 분석에 관한 사례 연구)

  • Park, Boo-Seong;Jo, Hyun;Cha, Seung-Hun;Lee, Ki-Hwan
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.506-525
    • /
    • 2006
  • For the design of large scale rock slope which has complex formations and geological structures, generally, insufficiency of geotechnical investigations and laboratory tests are the main factors of slope failures doling construction. In such case, remedial measures to stabilize slope should be selected and applied through reliable investigations and analysis considering the geotechnical characteristics. The rock slope of this study, one of the largest cut slopes in Korea with a length of 520.0 m and maximum height of 122.0 m consists of metasedimentary rocks. And a case study on the causes of large-scale rock slope failure was carried out by analysis of landslides history and site investigations during construction. When the slope with the original design slope of 0.7: 1.0 (H:V) was partially constructed, the slope failure was occurred due to the factors such as poor conditions of rocks (weathered zone, coaly shale and fault shear zone), various discontinuities (joints, foliations and faults), severe rain storm and so on. The types of failures were rockfall, circular failure, wedge failure and the combination of these types. So, the design of slope was changed three times to ensure long-term slope stability. This paper is intended to be a useful reference for analyzing and estimating the stability of rock slopes whose site conditions are similar to those of this study site such as geological structures and geotechnical properties.

Characteristics of Beam-tilting Slot Array Waveguide Antennas for DBS Reception (DBS 수신용 빔 틸트형 슬롯 어레이 도파관 안테나의 특성)

  • Min, Gyeong-Sik;Kim, Dong-Cheol;Arai, Hiroyuki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.3
    • /
    • pp.140-149
    • /
    • 2002
  • This paper describes the characteristics of beam-tilting slot away waveguide antennas for mobile DBS reception. As a basic study of slotted waveguide array, design for 16 slot elements located on a broad-wall waveguide is considered. Design parameters such as slot length, space between each slot and cross slot angle of antennas with the beam-tilting characteristics are calculated by method of moments. Based on these results, the radiation waveguide antennas with 16-element $\times$16-array are designed and fabricated. The measured main beam direction angles of the fabricated antennas are 48$^{\circ}$to 50$^{\circ}$depending on the measured frequencies and it shows good agreement with prediction. The measured 3 dB beam width of elevation pattern is about 13$^{\circ}$, and the axial ratio and the gain measured at DBS band are observed 2.8 dB below and 24 dBi above, respectively. In order to evaluate a performance of the fabricated waveguide planar antenna, it is combined with the satellite tracking control system and the field performance test of antenna mounted on a mobile vehicle is carried out at highway. During the measurement, it was possible to watch television without a break signal in a driving vehicle and an excellent performance of the proposed antennas was demonstrated.

An Application of Design of Experiments for Optimization of MOF-235 Synthesis for Acetylene Adsorption Process (아세틸렌 흡착공정용 MOF-235 합성 최적화를 위한 실험 계획법 적용)

  • Cho, Hyungmin;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.377-382
    • /
    • 2020
  • A sequential design of experiments was employed to optimize MOF-235 synthesis for acetylene adsorption process. Two experimental designs were applied: a two-level factorial design for screening and a central composite design, one of response surface methodologies (RSM). In this study, 23 factorial design of experiment was used to evaluate the effect of parameters of synthesis temperature and time, and also mixing speed on crystallinity of MOF-235. Experiments were conducted 16 times follwing MINITAB 19 design software for MOF-235 synthesis. Half-normal, pareto, residual, main and interaction effects were drawn based on the XRD results. The analysis of variance (ANOVA) of test results depicts that the synthesis temperature and time have significant effects on the crystallinity of MOF-235 (response variable). After screening, a central composite design was performed to optimize the acetylene adsorption capacity of MOF-235 based on synthesis conditions. From nine runs designed by MINITAB 19, the result was calculated using the second order model equation. It was estimated that the maximum adsorption capacity (18.7 mmol/g) was observed for MOF-235 synthesized at optimum conditions of 86.3 ℃ and 28.7 h.

Estimation of the Shaft Resistance of Rock-Socketed Drilled Shafts using Geological Strength Index (GSI를 이용한 암반에 근입된 현장타설말뚝의 주면저항력 산정)

  • Cho, Chun Whan;Lee, Hyuk Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.25-31
    • /
    • 2006
  • It is common to use the unconfined compressive strength (UCS) of intact rock to estimate the shaft resistance of rock socketed drilled shaft. Therefore the most design manuals give a guide to use the UCS of rock core to estimate the shaft resistance of rock-socketed drilled shaft. Recently, however the design manuals for highway bridge (KSCE, 2001) and of AASHTO (2000) were revised to use the UCS of rock mass with RQD instead of the UCS of rock core so that the estimated resistance could be representative of field conditions. Questions have been raised in application of the new guide to the domestic main bed rock types. The intrinsic drawbacks in terms of RQD were comprised in the questions, too. As the results, in 2002 the new guide in the design manual for highway bridge (KSCE, 2001) were again revised to use the UCS of rock core to estimate the shaft resistance of rock-socketed drilled shafts. In this paper, various methods which can estimate the UCS of rock mass from intact rock core were reviewed. It seems that among those, the Hoek-Brown method is very reliable and practical for the estimation of the UCS of rock mass from rock cores. As the results, using the Hoek-Brown failure criterion a modified guide for the estimation of the shaft resistance of rock-socketed drilled shafts was suggested in this paper. Through a case study it is shown that the suggested method gives a good agreement with the measured data.

Development of a Multi-Camera Inline System using Machine Vision System for Quality Inspection of Pharmaceutical Containers (의약 용기의 품질 검사를 위한 머신비전을 적용한 다중 카메라 인라인 검사 시스템 개발)

  • Tae-Yoon Lee;Seok-Moon Yoon;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.469-473
    • /
    • 2024
  • In this paper proposes a study on the development of a multi-camera inline inspection system using machine vision for quality inspection of pharmaceutical containers. The proposed technique captures the pharmaceutical containers from multiple angles using several cameras, allowing for more accurate quality assessment. Based on the captured data, the system inspects the dimensions and defects of the containers and, upon detecting defects, notifies the user and automatically removes the defective containers, thereby enhancing inspection efficiency. The development of the multi-camera inline inspection system using machine vision is divided into four stages. First, the design and production of a control unit that fixes or rotates the containers via suction. Second, the design and production of the main system body that moves, captures, and ejects defective products. Third, the design and development of control logic for the embedded board that controls the entire system. Finally, the design and development of a user interface (GUI) that detects defects in the pharmaceutical containers using image processing of the captured images. The system's performance was evaluated through experiments conducted by a certified testing agency. The results showed that the dimensional measurement error range of the pharmaceutical containers was between -0.30 to 0.28 mm (outer diameter) and -0.11 to 0.57 mm (overall length), which is superior to the global standard of 1 mm. The system's operational stability was measured at 100%, demonstrating its reliability. Therefore, the efficacy of the proposed multi-camera inline inspection system using machine vision for the quality inspection of pharmaceutical containers has been validated.

A Study on the Field Application of Automatic Grouting System (자동화 그라우팅 기법의 현장적용성에 관한 연구)

  • Do, Jongnam;Park, Junghwan;Choi, Dongchan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.63-74
    • /
    • 2012
  • In Korea, grouting has been mostly designed and constructed by experiences without expert knowledge and theoretical study. So there are a lot of problems related to the quality and safty of grouting. Therefor, in this paper the quality management skills and method were discussed through out by using the auto-grouting method and field test of grouting for the construction. Through the limit water injection test of the soil, it make the optimum injection pressure and injection speed of grouting, and through the lugeon test of the rock, it make assess the permeability of before and after grouting. In order to prevent the hydraulic fracture of soil and break away from the grouts if it apply four kinds of mode of grouting stop criteria, injection effects can be improved. From the above characteristcs designers evalute the fitness values of injection pressure(p), injection speed(q) and grouting penetration time(t). So far, to record and manage pressure(p) and speed(q) of grouting autographic devices such as intergation flow-meter usually record data in a roll of paper. Intergration flow-meter can record grouting flow quantity exactly, but the recorded pressures differ from the any basis such as intitial, intermediate and final point. Therefore, it has been argued that is a need of reliable method to describe the connection between the pressure recorded by an intergration flow-meter and the special properties of the grouting target ground. auto-grouting method can describe the reliable connection between the grouting pressure and the special properties of the grouting target ground. So, in this paper by using auto-grouting method, it is expected that to secure basis of quality control techniques construction.

Design and Implementation of National Language Ability Test System using Korean Style Internet-Based Test added Middle-Server (미들서버방식 한국형 IBT를 이용한 국가언어능력평가 시스템의 설계 및 구현)

  • Chang, Young-Hyun;Park, Dea-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.185-192
    • /
    • 2011
  • The purpose of this paper is to propose the design and implementation of a korean style internet-based test system on the basis of efficiency and stability for middle server. The current assessment system has some unstable elements with regard to transmission procedure, cost, system load and stability. This paper proposes a series of activities for the performance improvement of korean style internet-based test system which finally produced various excellent results in the administration of expense control, human resources, and special operational affairs. The proposed system's technological factors using middle server have been tested through a basic simulation pilot system. Actual development procedure starts from the analysis required by improving the shortcomings of existing internet-based test systems. A efficiency comparison with existing system and newly developed system was made in the area of number of operators, abnormal processing, system maintenances. Korean style internet-based test system using middle server has shown great efficiency increased to the maximum of 2 times about the effectiveness of processing for various parts. The korean style internet-based test system using middle server have been given good evaluations with regard to the convenience of their use and the management system for operators and supervisors.

Prediction of Fracture Strength of Woven CFRP Laminates According to Fiber Orientation (평직 CFRP 적층복합재료의 섬유배열각도에 따른 파괴강도 예측)

  • Kang, Min-Sung;Park, Hong-Sun;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.881-887
    • /
    • 2012
  • CFRP composite materials have been widely used in various fields of engineering because of their excellent properties. They show high specific stiffness and specific strength compared with metallic materiasl. Woven CFRP composite materials are fabricated from carbon fibers with two orientation angles ($0^{\circ}/90^{\circ}$), which influences the mechanical properties. Therefore, woven CFRP composite materials show different types of fracture behavior according to the load direction. Therefore, the fracture behavior of these materials needs to be evaluated according to the load direction when designing structures using these materials. In this study, we evaluate the fracture strength of plain-woven CFRP composite materials according to the load direction. We performed tests for six different angles (load direction: $0^{\circ}/90^{\circ}$, $30^{\circ}/-60^{\circ}$, $+45^{\circ}/-45^{\circ}$) and estimated the fracture strength for an arbitrary fiber angle by using the modified Tan's theory and harmonic function.

A Study on the Development of Impact Analysis Model of Roll Control System for Course Correction Munition (탄도 수정탄 롤제어시스템 충격해석 모델 개발에 관한 연구)

  • Ko, Jun Bok;Yun, Chan Sik;Kim, Yong Dae;Kim, Wan Joo;Cho, Seung Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.737-742
    • /
    • 2015
  • Course correction munition are a weapson system for precision attacks and are assembled by applying a ballistic control system to existing projectiles. The roll control system is a subsystem of the ballistic control system and is placed between the guidance and control units inside of the projectile, which undergoes a 5000g lateral acceleration. Thus, it is very important to design the system to endure this load. Many developed countries evaluate the performance and safety of course correction munitions' parts using live-fire gun launch tests or a soft recovery system. However, these methods are expensive and slow. Thus, in this study, we develop impact analysis model of the roll control system using CAE. We apply the code to simulate impact phenomenon and use Johnson-Cook material model for modeling the high strain rate effect on the materials. We also design bearings in detail to analyze their behavior and verify the reliability of CAE model through gas-gun impact tests of the roll control system.

Evaluation of Applicability of CMD-SOIL Recycled Resources as Ground Improvement Material for Deep Mixing Method (심층혼합공법용 지반개량재로서 순환자원을 재활용한 CMD-SOIL의 적용성 평가)

  • Ham, Tae-Gew;Seo, Se-Gwan;Cho, Dae-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.43-52
    • /
    • 2021
  • As port development in soft ground is actively promoted for international logistics and transportation, the Deep Mixing Method (DMM) is continuously applied to form an improved column body directly in the ground by mixing cement with soil to secure the stability of the structure. However, in the case of cement, there is a problem of emitting a lot of greenhouse gases during the production process, so the development and use of new alternative materials are socially required to achieve the national goal of carbon neutrality. Accordingly, in this study, CMD-SOIL, developed to induce a hardening reaction similar to cement by recycling recycled resources, was used as a ground improvement material for the DMM. In addition, it was attempted to determine the possibility of replacing cement by conducting on-site test construction and evaluating applicability. As a result of the study, the compressive strength of CMD-SOIL compared to the design reference strength was 1.46 to 2.64 times higher in the field mixing test and 1.2 to 5.03 times higher than in the confirmed boring. In addition, the ratio (λ) of the compressive strength in the field to the design reference strength was 0.63 to 1.14, which was similar to the previous research results. Therefore, in the case of CMD-SOIL, it is possible to express the compressive strength necessary to secure stability, and there is no difference in applicability compared to existing materials such as ordinary portland cement and blast furnace slag cement, so it was analyzed that it could be used as a ground improvement material for the DMM.