Kim, Sun-Ho;Kim, Se-Jun;Mo, Ha-Young;Kim, Chae-Reen;Park, Gyu-Tae;Park, Doo-Soon
Annual Conference of KIPS
/
2014.04a
/
pp.642-644
/
2014
정보의 폭발적인 증가로 인해 사용자들은 오히려 원하는 정보를 빠른 시간에 얻는 것이 힘들어졌다. 따라서 이 문제를 해결하기 위한 다양한 방식의 새로운 서비스들이 제공되고 있다. 추천 시스템 중에서 영화를 추천해주는 방법에는 사용되는 알고리즘에는 협업필터링 방법이 가장 성공한 알고리즘으로 사용되고 있다. 협업 필터링 방법은 사용자가 자발적으로 입력한 선호도 평가치를 바탕으로 추천 하고자 하는 사용자와 취향이 비슷하다고 판단되는 사람들 즉, 최근접 이웃을 구하고 최근접 이웃의 선호도 평가치를 바탕으로 사용자에게 영화를 추천을 해주는 기법이다. 그러나 협업 필터링에는 몇 가지 대표적인 문제점이 있으며 희박성 및 확장성, 투명성이 있다. 본 논문에서는 영화 추천 시스템에서의 협업필터링의 희박성 문제를 보완하고자 개개인의 성향을 반영하여 효율이 좋은 추천 방법을 제안하고 하둡에서 성능평가를 하였다.
In this paper, we tried to find out sound quality metrics to express discomfort of overload excavator noise and to develop sound quality indexes through multiple regression analysis by using them. For this purpose, the interior noise of cabin under overload condition was recorded for six excavator models with different noise properties and Jury test was carried out by PCM (Paired Comparison Method) and MEM (Magnitude Estimation Method). Jury test result with low consistency was classified into two groups with different preference tendencies by cluster analysis and multiple regression analysis was conducted in order to find out which sound quality metrics have significant effects on discomfort(low preference). As a result, we figured out that the sound quality metrics to express the discomfort were the partial loudness (= $PN_{10Bark}$) between 0 and 10 Bark in case of group1 and the difference between engine noise(= $dB_{EG}$) and hydraulic system noise ($dB_1$) in case of group2. Using the results of preference ranking and tendency analysis of PCM followed by the correlation analysis between PCM and MEM, the more reliable results were adopted by excluding the data with low consistency obtained from Jury test via MEM.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.10a
/
pp.3-8
/
1998
본 논문에서는 사용자의 관심도나 선호도를 반영하여, 퍼지숫자를 정렬하는 방법을 제안한다. 사용자는 자신의 관심도나 선호도를 퍼지집합으로 표현한다. 제안하는 방법은 사용자로부터 주어진 퍼지집합을 평가관점으로 이용하며, 평가함수로는 이전에 제안된 만족도 함수를 이용한다. 제안하는 방법이 관점에 따라 어떠한 결과를 주는지를 보기 위하여, 퍼지숫자 정렬에 적용한 예를 보인다.
Journal of the Korean Society for Library and Information Science
/
v.45
no.2
/
pp.163-184
/
2011
The aim of this study is providing basic data to design successful in-service training program for teacher librarians by analyzing their preference on subjects of customized intensive programs for indicators of teacher expertise development. According to the survey, teacher librarians seem to regard training subjects such as Reading Education and Information Literacy Instruction related educational information services as core jobs and prefer developing instructional contents and materials. Under the levels of school it seems that teacher librarians in the elementary school are interested in programs for library activation, management of volunteers, analyses of users' needs and curricula, evaluations of user instruction and information literacy instruction. Older teacher librarians favor an understanding of metadata, building and supporting information system and instruction. Therefore, training subjects for teacher librarians should be formed by linking strategies between school library instruction and subject curricula. And in terms of the method of training, case studies and practical training might be better than lectures based on the theory.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.42
no.6
/
pp.63-74
/
2005
In Electronic Commerce, the latest most of the personalized recommender systems have applied to the collaborative filtering technique. This method calculates the weight of similarity among users who have a similar preference degree in order to predict and recommend the item which hits to propensity of users. In this case, we commonly use Pearson Correlation Coefficient. However, this method is feasible to calculate a correlation if only there are the items that two users evaluated a preference degree in common. Accordingly, the accuracy of prediction falls. The weight of similarity can affect not only the case which predicts the item which hits to propensity of users, but also the performance of the personalized recommender system. In this study, we verify the improvement of the prediction accuracy through an experiment after observing the rule of the weight of similarity applying Vector similarity, Entropy, Inverse user frequency, and Default voting of Information Retrieval field. The result shows that the method combining the weight of similarity using the Entropy with Default voting got the most efficient performance.
On the internet, the rating scores assigned by customers are considered as the preference information of themselves and thus, these can be used efficiently in the customer profile generation process of recommender system. However, since anyone is free to assign a score that has a biased rating, using this without any filtering can exhibit a reliability problem. In this study, we suggest the methodology that measures the reliability of rating scores and then applies them to the customer profile creation process. Unlikely to some related studies which measure the reliability on the user level, we measure the reliability on the individual rating score level. Experimental results show that prediction accuracy of recommender system can be enhanced when ratings with higher reliability are selectively used for the customer profile configuration.
Park, Ji-Sun;Kim, Taek-Hun;Ryu, Young-Suk;Yang, Sung-Bong
Journal of KIISE:Software and Applications
/
v.29
no.9
/
pp.669-675
/
2002
In recent years most of personalized recommender systems in electronic commerce utilize collaborative filtering algorithm in order to recommend more appropriate items. User-based collaborative filtering is based on the ratings of other users who have similar preferences to a user in order to predict the rating of an item that the user hasn't seen yet. This nay decrease the accuracy of prediction because the similarity between two users is computed with respect to the two users and only when an item has been rated by the users. In item-based collaborative filtering, the preference of an item is predicted based on the similarity between the item and each of other items that have rated by users. This method, however, uses the ratings of users who are not the neighbors of a user for computing the similarity between a pair of items. Hence item-based collaborative filtering may degrade the accuracy of a recommender system. In this paper, we present a new approach that a user's neighborhood is used when we compute the similarity between the items in traditional item-based collaborative filtering in order to compensate the weak points of the current item-based collaborative filtering and to improve the prediction accuracy. We empirically evaluate the accuracy of our approach to compare with several different collaborative filtering approaches using the EachMovie collaborative filtering data set. The experimental results show that our approach provides better quality in prediction and recommendation list than other collaborative filtering approaches.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.