• Title/Summary/Keyword: 선형 SVM

Search Result 104, Processing Time 0.026 seconds

People Detection based HOG-LBP using Various Gamma Correction (다양한 Gamma 보정을 이용한 HOG-LBP 기반 사람검출)

  • Ko, Jung-Sob;Lee, Chul-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.639-641
    • /
    • 2012
  • People detection using HOG linear SVM classification has been successfully applied. Also, HOG combined with LBP, which reflects texture informations, shows improved performance. In this paper, we analyze various gamma correction methods. We also analyze results obtained using HOG+LBP methods.

  • PDF

A Performance Comparison of SVM and MLP for Multiple Defect Diagnosis of Gas Turbine Engine (가스터빈 엔진의 복합 결함 진단을 위한 SVM과 MLP의 성능 비교)

  • Park Jun-Cheol;Roh Tae-Seong;Choi Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.158-161
    • /
    • 2005
  • In this study, the defect diagnosis of the gas turbine engine was tried using Support Vector Machine(SVM). It is known that SVM can find the optimal solution mathematically through classifying two groups and searching for the Hyperplane of the arbitrary nonlinear boundary. The method for the decision of the gas turbine defect quantitatively was proposed using the Multi Layer SVM for classifying two groups and it was verified that SVM was shown quicker and more reliable diagnostic results than the existing Multi Layer Perceptron(MLP).

  • PDF

Spare Representation Learning of Kernel Space Using the Kernel Relaxation Procedure (커널 이완 절차에 의한 커널 공간의 저밀도 표현 학습)

  • 류재홍;정종철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.817-821
    • /
    • 2001
  • In this paper, a new learning methodology for kernel methods that results in a sparse representation of kernel space from the training patterns for classification problems is suggested. Among the traditional algorithms of linear discriminant function, this paper shows that the relaxation procedure can obtain the maximum margin separating hyperplane of linearly separable pattern classification problem as SVM(Support Vector Machine) classifier does. The original relaxation method gives only the necessary condition of SV patterns. We suggest the sufficient condition to identify the SV patterns in the learning epoches. For sequential learning of kernel methods, extended SVM and kernel discriminant function are defined. Systematic derivation of learning algorithm is introduced. Experiment results show the new methods have the higher or equivalent performance compared to the conventional approach.

  • PDF

A Study on the Selection of Parameters and Application of SVM for Software Cost Estimation (소프트웨어 비용산정을 위한 SVM의 파라미터 선정과 응용에 관한 연구)

  • Kwon, Ki-Tae;Lee, Joon-Gil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.209-216
    • /
    • 2009
  • The accurate estimation of software development cost is important to a successful development in software engineering. This paper presents a software cost estimation method using a support vector machine. Support vector machine is one of the efficient techniques for classification, and it is the classification method of input data based on Maximum-Margin Hyperplane. But SVM has the problem of the selection of optimal parameters, because it is dependent on user's parameters. This paper selects optimized SVM parameters using advanced method, and estimates software development cost. The proposed approach outperform some recent results reported in the literature.

Facial Impression Analysis Using SVM (SVM을 이용한 얼굴 인상 분석)

  • Jang, Kyung-Shik;Woo, Young-Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.965-968
    • /
    • 2007
  • In this paper, we propose an efficient method to classify human facial impression using face image. The features that represent the shape of eye, jaw and face are used. The proposed method employs PCA, LDA and SVM in series. Human face has been classified for 8 facial impressions. The experiments have been performed for many face images, and show encouraging result.

  • PDF

A Machine Vision System for Inspection of Car Sunroof Using SVM Algorithm (SVM 학습 알고리즘을 이용한 자동차 썬루프 장치의 볼트 유무 검사 장비)

  • Kim, Giseok;Lee, Saac;Cho, Jae-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.289-292
    • /
    • 2013
  • 본 논문은 SVM(Support Vector Machine) 학습알고리즘을 이용하여 자동차 썬루프 장치의 볼트 유무를 검사하는 자동차 부품 검사 장비에 관한 것이다. 자동화 시스템은 높은 정밀도와 생산성을 위한 빠른 처리 속도를 요구한다. 이를 위해 본 논문에서는 선형 SVM 학습알고리즘을 활용하여 자동차 썬루프 장치의 볼트 유무를 검사하는 알고리즘을 개발하였다. SVM 알고리즘은 분류를 위한 알고리즘이지만 ROI(Region-Of-Interest) 내의 모든 윈도우에 대한 분류를 수행하여 검출기 역할을 할 수 있도록 한다. 볼트가 있는 경우와 볼트가 없는 경우가 아닌 네거티브 샘플을 확보하기 위해 검출 대상 물체 주변에서 다양한 네거티브 샘플들을 추출한다. 그 결과 물체가 예상 위치에서 다소 빗나가는 경우에도 볼트 유무를 판별할 수 있을 뿐 아니라 볼트의 위치까지 검출할 수 있고, 처리 속도에서 자동화 시스템이 요구하는 수준에 도달함을 실험 결과를 통해 검증한다.

Medical Image Classification and Retrieval using MPEG-7 Visual Descriptors and Multi-Class SVM(Support Vector Machine) (MPEG-7 시각 기술자와 멀티 클래스 SVM을 이용한 의료 영상 분류와 검색)

  • Shim, Jeong-Hee;Ko, Byoung-Chul;Nam, Jae-Yeal
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.135-138
    • /
    • 2008
  • 본 논문은 의료 영상에 대한 효과적인 분류와 검색을 위한 알고리즘을 제안한다. 영상 분류와 검색을 위해서 MPEG-7 표준 기술자인 색 구조 기술자와 경계선 히스토그램 기술자를 사용해 영상들에 대한 특징 값을 추출한다. 이렇게 구해진 특징 값들을 의료 영상의 분류와 검색에 적용해 본 결과 비교적 낮은 성능을 보여줌을 확인하고 앞서 구해진 특징 값들을 교사 학습 방법인 SVM(Support Vector Machine)과 비교사 학습 방법인 FCM(Fuzzy C-means Clustering)에 적용시켰다. 기존 연구에서는 SVM과 FCM의 통합으로 의료 영상에 대한 분류와 검색을 시행하였지만 본 논문에서 실험한 결과 SVM과 MPEG-7 시각 기술자 중에 하나인 EHD(Edge Histogram Descriptor)를 가중치 선형 결합하여 실험한 결과가 더 정확한 분류와 높은 검색 성능을 나타냄을 확인하였다.

Pan Evaporation Analysis using Nonlinear Disaggregation Model (비선형 분리모형에 의한 증발접시 증발량의 해석)

  • Kim, Seong-Won;Kim, Jeong-Heon;Park, Gi-Beom
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1147-1150
    • /
    • 2008
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of the support vector machines neural networks model (SVM-NNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The SVM-NNM in time series modeling is relatively new and it is more problematic in comparison with classifications. In this study, The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training, cross validation, and testing data, respectively. From this research, we evaluate the impact of the SVM-NNM and the MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

Evolutionary Nonlinear Compensation and Support Vector Machine Based Prediction of Windstorm Advisory (진화적 비선형 보정 및 SVM 분류에 의한 강풍 특보 예측 기법)

  • Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1799-1803
    • /
    • 2017
  • This paper introduces the prediction methods of windstorm advisory using GP nonlinear compensation and SVM. The existing special report prediction is not specialized for strong wind, such as windstorm, because it is based on the wide range of predicted values for wind speed from low to high. In order to improve the performance of strong wind reporting prediction, a method that can efficiently classify boundaries of strong wind is necessary. First, evolutionary nonlinear regression based compensation technique is applied to obtain more accurate values of prediction for wind speed using UM data. Based on the prediction wind speed, the windstorm advisory is determined. Second, SVM method is applied to classify directly using the data of UM predictors and windstorm advisory. Above two methods are compared to evaluate of the performances for the windstorm data in Jeju Island in South Korea. The data of 2007-2009, 2011 year is used for training, and 2012 year is used for test.

Fault Classification of Induction Motors by k-NN and SVM (k-NN과 SVM을 이용한 유도전동기 고장 분류)

  • Park, Seong-Mu;Lee, Dae-Jong;Gwon, Seok-Yeong;Kim, Yong-Sam;Jun, Myeong-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.109-112
    • /
    • 2006
  • 본 논문에서는 PCA에 의한 특징추출과 k-NN과 SVM에 기반을 계층구조의 분류기에 의한 유도전동기의 고장진단 알고리즘을 제안한다. 제안된 방법은 k-NN에 의해 선형적으로 분류 가능한 고장패턴을 분류한 후, 분류가 되지 않는 부분을 커널 함수에 의해 고차원 공간으로 입력패턴을 매핑한 후 SVM에 의해 고장을 진단하는 계층구조를 갖는다. 실험장치를 구축한 후, 다양한 부하에 대하여 몇몇의 전기적 고장과 기계적 고장 하에서 획득한 데이터를 이용하여 제안된 방법의 타당성을 검증한다.

  • PDF