• Title/Summary/Keyword: 선형 포텐셜이론

Search Result 62, Processing Time 0.018 seconds

A Study on the Performance of a Submerged Breakwater by Using the Singularity Distribution Method (특이점 분포법에 의한 잠수된 방파제의 성능 해석)

  • 이동환;최항순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.1
    • /
    • pp.73-79
    • /
    • 2001
  • In this study, a submerged plate-type breakwater is considered, which is supported by elastic foundation. This breakwater makes use of wave phase interaction among the incident, diffracted and radiated waves. We apply a three-dimensional singularity distribution method within the linear potential theory in order to describe the wave field. The submerged plate is assumed to be rigid and the elastic support be a linear spring with constant stiffness. A typical rectangle plate is exemplified for numerical calculation. The thickness of the plate is carefully selected in order to guarantee the solution to be stable by checking the condition number of the system matrix. A parametric study is carried out for examining the effect of the stiffness of the elastic support on performance of the breakwater. We also examine the effect of the submerged depth.

  • PDF

Application of Monte Carlo Simulation to Intercalation Electrochemistry II. Kinetic Approach to Lithium Intercalation into LiMn2O4 Electrode

  • Kim, Sung-Woo;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.86-92
    • /
    • 2002
  • The present article is concerned with the application of the kinetic Monte Carlo simulation to electrochemistry of lithium intercalation from the kinetic view point. Basic concepts of the kinetic Monte Carlo method and the transition state theory were first introduced, and then the simulation procedures were explained to evaluate diffusion process. Finally the kinetic Monte Carlo method based upon the transition state theory was employed under the cell-impedance-controlled constraint to analyse the current transient and the linear sweep voltammogram for the $LiMn_2O_4$ electrode, one of the intercalation compounds. From the results, it was found that the kinetic Monte Carlo method is much relevant to investigate kinetics of the lithium intercalation in the field of electrochemistry.

Correlation of Reflection Coefficient and Extracted Efficiency of an Oscillating Water Column Device in Front of a Seawall (안벽 앞에 설치된 진동수주형 파력발전장치의 반사율과 추출효율과의 상관관계)

  • Cho, Il Hyoung;Kim, Jeongrok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.4
    • /
    • pp.242-251
    • /
    • 2020
  • In this study, the extraction efficiency and reflection coefficient by a two-dimensional OWC (Oscillating Water Column) WEC (wave energy converter) installed in front of a seawall was investigated for regular/irregular waves. The matched eigenfunction expansion method (MEEM) based on the linear potential theory was applied as an analytical tool. The diffraction problem by the incident wave in the open-chamber and the radiation problem by the oscillating pressure in the closed-chamber were solved to obtain the volume fluxes at the internal free-surface. Applying the volume fluxes into the continuity equation for the airflow in a chamber, we got the oscillating air pressure. The maximum extracted power and corresponding reflection coefficient were determined at the optimal turbine coefficient that maximizes the extracted power. OWC device designed for a high extracted efficiency simultaneously contributes to reduce reflected waves.

An Analytical Study of Regular Waves Generated by Bottom Wave Makers in a 3-Dimensional Wave Basin (3차원 조파수조에서 바닥 조파장치에 의해 재현된 규칙파에 대한 해석적 연구)

  • Jung, Jae-Sang;Lee, Changhoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.93-99
    • /
    • 2022
  • Analytical solutions for regular waves generated by bottom wave makers in a 3-dimensional wave basin were derived in this study. Bottom wave makers which have triangular, rectangular and combination of two shapes were adopted. The 3-dimensional velocity potential was derived based on the linear wave theory with the bottom moving boundary condition, kinematic and dynamic free surface boundary conditions in a wave basin. Then, analytical solutions of 3-dimensional particle velocities and free surface displacement were derived from the velocity potential. The solutions showed physically valid results for regular waves generated by bottom wave makers in a wave basin. The analytical solution for obliquely propagating wave generation from bottom wave maker which works like a snake was also derived. Numerical results of the solution agree well with theoretically predicted results.

The Nonlinear Motions of Cylinders(I) (주상체의 비선형 운동(I) -강제동요문제, 조파저항문제-)

  • H.Y. Lee;J.H. Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.114-131
    • /
    • 1992
  • In the present work, a two-dimensional boundary-value problem for a large amplitude motion is treated as an initial-value problem by satisfying the exact body-boundary and nonlinear free-surface boundary conditions. The present nonlinear numerical scheme is similar to that described by Vinje and Brevig(1981) who utilized the Cauchy's theorem and assumed the periodicity in the horizontal coordinate. In the present thesis, however, the periodicity in the horizontal coordinate is not assumed. Thus the present method can treat more realistic problems, which allow radiating waves to infinities. In the present method of solution, the original infinite fluid domain, is divided into two subdomains ; ie the inner and outer subdomains which are a local nonlinear subdomain and the truncated infinite linear subdomain, respectively. By imposing an appropriate matching condition, the computation is carried out only in the inner domain which includes the body. Here we adopt the nonlinear scheme of Vinje & Brevig only in the inner domain and respresent the solution in the truncated infinite subdomains by distributing the time-dependent Green function on the matching boundaries. The matching condition is that the velocity potential and stream function are required to be continuous across the matching boundary. In the computations we used, if necessary, a regriding algorithm on the free surface which could give converged stable solutions successfully even for the breaking waves. In harmonic oscillation problem, each harmonic component and time-mean force are obtained by the Fourier transform of the computed forces in the time domain. The numerical calculations are made for the following problems. $\cdot$ Forced harmonic large-amplitude oscillation(${\omega}{\neq}0,\;U=0$) $\cdot$ Translation with a uniform speed(${\omega}=0,\;U{\neq}0$) The computed results are compared with available experimental data and other analytical results.

  • PDF

Reflection and Transmission Coefficients by a Surface-Mounted Horizontal Porous Plate (수면 위에 놓인 수평 유공판에 의한 반사율과 투과율)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.327-334
    • /
    • 2013
  • The interaction of oblique incident waves with a surface-mounted horizontal porous plate is investigated using matched eigenfunction expansion method under the assumption of linear potential theory. The new boundary condition on the porous plate suggested by Zhao et al.(2010) when it is situated at the still water surface is used. The imaginary part of the first propagating-mode eigenvalue in the fluid region under a horizontal porous plate, is closely related to the energy dissipation across the porous plate. By changing the porosity, plate width, wave frequencies, and incidence angles, the reflection and transmission coefficients as well as the wave loads on the porous plate are obtained. It is found that the transmission coefficients can be significantly reduced by selecting optimal porous parameter b = 5.0, also increasing the plate width and incidence angle.

Performance Analysis of Wave Energy Converter Using a Submerged Pendulum Plate (몰수형 진자판을 이용한 파력발전장치의 성능해석)

  • Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.91-99
    • /
    • 2017
  • The parametric study was performed for performance enhancement of wave energy converter(WEC) using a submerged pendulum plate. The wave exciting moment and hydrodynamic moment were obtained by means of eigenfunction expansion method based on the linear potential theory, and then the roll response of a pendulum plate and time averaged extracted power were investigated. The optimal PTO damping coefficient was suggested to give optimal extracted power. The peak value of optimal extracted power occurs at the resonant frequency. The resonant peak and it's width increase, as the height and thickness of a pendulum plate increase. The mooring line installed at the end of the pendulum plate is effective for extracting wave energy because it can not only induce the resonance with the waves of the installation site but also increase the restoring moment in case of PTO-on. The WEC using a rolling pendulum plate suitable for the shallow water acts as breakwater as well as energy extraction device.

Wave Control by a Surface-Mounted Horizontal Membrane (수면 위에 고정된 수평막에 의한 파랑제어)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.83-91
    • /
    • 2004
  • The performance of wave control by a surface-mounted horizontal membrane is analyzed in the frame of linear potential theory. To employ the eigenfunction expansion method, the fluid domain is divided into two regions i.e. region without membrane and membrane-covered region. By matching the each solutions at boundaries of adjacent regions, the complete solution is obtained. The present analytical method solving the scattering problem directly gives the same results as Cho and Kim(1998)'s method solving the diffraction and the radiation problem separately. To verify the developed model, the model test with a surface-mounted horizontal membrane is conducted at the wave tank(36m${\times}$0.91m${\times}$l.22m). The analytic results are in good agreement with the experimental results. The reflection and transmission coefficients are investigated according to the change of membrane tension, length and incident frequencies.

Wave Reflections from Breakwaters Having Resonance Channels with Perforated Plates (유공판을 갖는 공진수로 내장형 방파제의 반사특성)

  • Kim, Jeongseok;Seo, Jihye;Lee, Younghoon;Lee, Joongwoo;Park, Woosun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.149-150
    • /
    • 2013
  • Recently, various types of perforated breakwaters are being constructed for protecting offshore storm waves. In general, perforated breakwaters have wave chambers with perforated walls at seaside. Purposes of the wave chambers are to reduce wave reflections and maximum wave forces acting on the breakwater. Impact wave forces due to wave breaking can attack to the perforated wall directly, so the effects have to be considered in the design of the perforated wall carefully. Using resonance channels for wave energy dissipation, a new concept perforated breakwater is proposed, which is free from impact loads. Numerical simulation was made for wave reflection characteristics of the breakwater with respect to major design parameters. Numerical analysis was carried out using the Galerkin's FE model based on the linear potential theory considering energy dissipation on the perforated plate. Variations of wave reflection was investigated according to perforated ratios of perforated plate.

  • PDF

Multiple steady state solutions in a two dimensional cavity flow (2차원 캐비티 유동에서 다중 정상 해에 관한 연구)

  • Cho Ji Ryong;Hong Sang Pyo;Kim Geun Oh;Kim Yun Taek
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.127-138
    • /
    • 1999
  • In this study steady state solutions of cavity flows driven by two moving walls are studied. The north and east walls of the cavity are movable where as the remaining two walls are fixed in space. Numerical experiments for three different driving schemes for moving walls are done at two different Reynolds numbers of Re=40 and 400. The first scheme is to accelerate north and east walls simultaneously. In the second one, the north wall is started first and the east wall is accelerated later. In the third one the east wall starts first. It is usually expected that all these three cases yield the same steady state solution after sufficiently long time. However, present numerical experiments show that such a usual belief is valid only when the Reynolds number is low enough (Re=40). At higher Reynolds number (Re=400), the flow develops to three different steady states depending on the history of the boundary condition change.

  • PDF