• Title/Summary/Keyword: 선형 액추에이터

Search Result 43, Processing Time 0.025 seconds

Transient Response of a linear actuator with a damping ratio (공진형 선형 액추에이터의 감쇄지수 변화에 따른 과도 응답특성)

  • Woo Byung Chul;Kang Do Hyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1037-1039
    • /
    • 2004
  • A typical conventional systems of a linear motion use rack and pinions or ball screws to convert rotary motions from DC servo motors. A linear motor has been used a several field for a MEMS technology and a aircraft carrier. We was studied a transient response of a linear actuator with a damping ratio, spring constant and a pressed power.

  • PDF

Relation between Resonance Frequency and Power factor on Linear Actuator with Resonance State (공진구동 선형액추에이터의 공진주파수와 Power factor특성)

  • Woo, B.C.;Hong, D.K.;Kim, J.M.;Chang, J.H.;Jeong, Y.H.;Koo, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.987-988
    • /
    • 2007
  • 리니어 모터는 일반적으로 회전하는 모터와 같이 여러 형상의 극간에서 발생되는 힘의 균형에 의해서 구동되는 것이 일반적이다. 특히 하나의 극간에서 미소 구동하는 리니어 모터는 구동력과 실제 이동하는 위치 사이에서 댐핑이나 무게와 함 사이에서 발생하는 가속력의 차이에 의해서 주어진 힘의 파형과 움직이는 위치의 괴적이 만들어가는 이동자의 위치 사이에는 다소 시간 처짐이 발생하게 된다. 본 논문에서는 구동력과 실제 이동하는 위치 사이의 시간 처짐의 원인으로 알려져 있는 여러 요소중 주파수와 입력전류를 변화시키고 이에 따른 선형전동기의 power factor의 변화와 공진주파수의 관계 등 선형전동기의 구동력 변화를 알아보았다. IT 기기 냉각용으로 제작한 횡자속 선형전동기에서 공진구동용 스프링을 장착하고 공진주파수 부근과 power factor가 가장 큰 값을 가지는 부근의 주파수를 선정하고 입력전류에 따른 전류, 전압, 위치, 역율을 알아보았다.

  • PDF

Structural Optimization for Nonlinear Dynamic Response of Solenoid Actuator (솔레노이드 액추에이터의 비선형 동적응답에 대한 구조최적설계)

  • Baek, Seokheum;Kim, Hyunsu;Jang, Deukyul;Lee, Seungbeom;Kwon, Youngseok;Ro, Euidong;Lee, Changhoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.113-120
    • /
    • 2013
  • This paper proposes a design optimization approach for core of solenoid actuators by combining optimization techniques with the finite element method (FEM). A solenoid is an important element part which hydraulically controls a transmission system, etc. The demanded feature of the solenoid is that it performs an electromagnetic force output being constant regardless of the stroke and being proportional to coil current. The plunger compresses a spring with a minimum force of 12 N over an 1.7 mm travel. The orthogonal array, analysis of variance (ANOVA) techniques and response surface optimization, are employed to determine the main effects and their optimal design variables. The methodology is demonstrated as a optimization tool for the core design of a solenoid actuator.

Nonlinear Vibrations of Piezoelectric Microactuators in Hard Disk Drives (하드디스크 드라이브용 압전형 마이크로 액추에이터의 비선형 진동 특성)

  • Jeong, Deok-Yeong;Lee, Seung-Yeop;Kim, Cheol-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2002-2008
    • /
    • 2001
  • Nonlinear vibration characteristics of a piezoelectric-type micro actuator used for hard disk drives are experimentally studied. The nonlinear characterisitics include hysteresis, superharmonic resonance, jump phenomenon, and shifting of natural frequencies. The vibration modes and frequencies of the commercial actuator of the Hutchinson's Magnum series are measured using a laser vibrometer. From harmonic excitation to the PZT acturator, we observe interesting hysteresis patterns with 3 times input frequency. It is shown that the micro actuator has the typical 3 times superhamonic resonances coupled to the first torsional and sway modes of the suspension.

A Study of Analyzing for Design of a Linear Force Motor for Hydraulic Valve (밸브구동용 선형 포스모터 설계를 위한 해석 연구)

  • Park, C.S.;Huh, J.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • To drive hydraulic valve is used Linear force motor, whose force and direction are controlled by electronic signals. Linear force motor has complicated figure and its force produced by changing of flux density which is produced by permanent magnet and electrical winding. Therefore it is needed an exact calculation of the flux density. In this paper a Linear force motor is designed and analysed by 3d program Flu calculating the flux density in air gap and in yoke, Force by different current. The analysed data will be tested by prototype Linear force motor. The data and analysing method can be used for designing Linear force motor.

Dynamic Response of Linear Actuator with the Thrust Force of Transverse Flux Linear Motor (횡자속 선형전동기의 추력특성에 따른 선형액추에이터의 동특성)

  • Woo Byung-Chul;Kang Do-Hyun;Hong Do-Kwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.16-20
    • /
    • 2006
  • The proposed paper presents an integrated linear actuator which combines Transverse Flux Linear Motor(TFLM) for Household elelctric applications. They both use the same primary magnetic circuit, but they have different secondary movers. The paper presents a new design of linear motor for a new electromagnetic linear actuator, an tintegrated TFLM. The calculated tthrust force is good agreement with experiments. We have studied a transient response of a linear actuator with a damping ratio, spring constant and specially a pressed power patterns for a constant stroke control.

Design of a Linear Motor using Piezoelectric actuator (압전 소자를 이용한 선형 모터 설계 및 제작)

  • Jo, Jae-Uk;Hwang, Jai-Hyuk;Kim, Byung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.869-874
    • /
    • 2010
  • Recently, a piezo actuator based linear motor has been actively studied because of its higher power density, compactness and quick response. However, the characteristic of small displacement makes the application of a piezo actuator limitative. In order to overcome this limitation, some actuation mechanisms using a piezo actuator are designed by bi-metal composite or more than two piezo actuators. Therefore, it enables to generate large displacement and have high resolution. In the proposed piezo motor, we have designed a bi-directional linear motor that can be operated by only one piezo actuator. In addition, it is activated with low frequency of the applied voltage, since, we utilize first mode shape of structure of motion generator to vibrate. Finally, moving direction can be simply controlled by changing the ratio of input frequency to natural frequency of structure of motion generator.

A Study on the Design and Analysis of a Voice Coil Linear Force Motor for Hydraulic Valve (밸브구동용 보이스 코일 선형 포스모터 설계와 해석 연구)

  • Park, C.S.;Huh, J.Y.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • The voice coil linear force motor is a kind of a direct drive motion device that uses a permanent magnetic field and coil winding to produce force. In order to design a voice coil linear force motor, an exact calculations of the required force, the flux density in air gap and the flux pathway are needed. A conventional method can be used usually to calculate the flux density in air gap, but with this method it is needed to find a magnetic circuit revision constant. In this paper a voice coil linear force motor is designed by conventional design method and analyzed by 3D simulation program "Flux". For the prototype linear force motor, the results of the calculated by conventional design method and the analyzed by 3D simulation program are compared with the test result. Finally it is showed that the magnetic circuit revision constant which is found by comparing of the analyzed and the measured data can be used for the design of the voice coil type linear force motor to minimize the trial and error.

Mechanically Modulated Nonlinear Digital Microactuators for Purified Digital Stroke and Nano-Precision Actuation (기계적 비선형 변조기를 이용한 디지털 구동의 안정화와 나노 구동정도 구현을 위한 디지털 마이크로액추에이터)

  • 이원철;진영현;조영호
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1990-1996
    • /
    • 2004
  • This paper presents a nonlinearly modulated digital actuator (NMDA) for producing nano-precision digital stroke. The NMDA, composed of a digital microactuator and a nonlinear micromechanical modulator, purifies the stroke of the digital actuator in order to generate the high-precision displacement output required for nano-positioning devices. The function and concept of the nonlinear micromechanical modulator are equivalent to those of the nonlinear electrical limiters. The linear and nonlinear modulators, having an identical input and output strokes of 15.2${\mu}{\textrm}{m}$ and 5.4${\mu}{\textrm}{m}$, are designed, fabricated and tested, respectively. The linear and nonlinear modulators are linked to identical digital actuators in order to compare the characteristics of the linearly modulated microactuator (LMDA) and NMDA. In addition, an identical linear modulator is attached to the output ports of LMDA and NMDA. The NMDA shows the repeatability of 12.3$\pm$2.9nm, superior to that of 27.8$\pm$2.9nm achieved by LMDA. When the identical linear modulator is connected to LMDA and NMDA, the final modulated output from NMDA shows the repeatability of 10.3$\pm$7.2nm, superior to that of 15.7$\pm$7.7nm from LMDA. We experimentally verify the displacement purifying capability of the nonlinear mechanical modulator, applicable to nano-precision positioning devices and systems.

Fabrication of Soft Textile Actuators Using NiTi Linear Shape Memory Alloy and Measurement of Dynamic Properties for a Smart Wearable (스마트 웨어러블용 NiTi계 선형 형상기억합금을 이용한 소프트 텍스타일 액추에이터 제작 및 동적 특성 측정)

  • Kim, Sang Un;Kim, Sang Jin;Kim, Jooyong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.6
    • /
    • pp.1154-1162
    • /
    • 2020
  • In this study, the soft textile actuator is produced for a smart wearable with the shape memory effects from linear shape memory alloys of Nickel and Titanium using the driving force through the fabrication process. The measurement model was designed to measure dynamic characteristics. The heating method, and memory shape of the linear shape memory alloy were set to measure the operating temperature. A shape memory alloy at 40.13℃, was used to heat the alloy with a power supply for the selective operation and rapid reaction speed. The required amount of current was obtained by calculating the amount of heat and (considering the prevention of overheating) set to 1.3 A. The fabrication process produced a soft textile actuator using a stitching technique for linear shape memory alloys at 0.5 mm intervals in the general fabric. The dynamic characteristics of linear shape memory alloys and actuators were measured and compared. For manufactured soft textile actuators, up to 0.8 N, twice the force of the single linear shape memory alloy, 0.38 N, and the response time was measured at 50 s.