• Title/Summary/Keyword: 선형 구간

Search Result 815, Processing Time 0.023 seconds

An empirical evidence of inconsistency of the ℓ1 trend filtering in change point detection (1 추세필터의 변화점 식별에 있어서의 비일치성)

  • Yu, Donghyeon;Lim, Johan;Son, Won
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.371-384
    • /
    • 2022
  • The fused LASSO signal approximator (FLSA) can be applied to find change points from the data having piecewise constant mean structure. It is well-known that the FLSA is inconsistent in change points detection. This inconsistency is due to a total-variation denoising penalty of the FLSA. ℓ1 trend filter, one of the popular tools for finding an underlying trend from data, can be used to identify change points of piecewise linear trends. Since the ℓ1 trend filter applies the sum of absolute values of slope differences, it can be inconsistent for change points recovery as the FLSA. However, there are few studies on the inconsistency of the ℓ1 trend filtering. In this paper, we demonstrate the inconsistency of the ℓ1 trend filtering with a numerical study.

Nonlinear Analysis of Space Trusses Using the Combined Arc-Length Method (복합 호장법을 이용한 공간 트러스의 비선형 해석)

  • 석창목;권영환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.361-369
    • /
    • 2001
  • This paper deals with numerical efficiency of nonlinear solution technique for space trusses. It will propose the combined Arc-length method to trace structural behavior after reaching buckling load as opposed to the current Arch-length method. The combined Arc-length method uses the current stiffness parameter as a control variable. It uses Secant-Newton method in stable path and applies Arc-length method in unstable path. To evaluate efficiency of solution technique, the accuracy of solution, convergence, and computing time concerning illustrative numerical examples are compared with the current Arc-length method. It show that the combined Arc-length method, as proposed in this paper, is superior to the current Arc-length method in numerical nonlinear analysis.

  • PDF

Accident Reduction Effect of Rumble Strips by Highway Geometric Characteristics (도로 선형특성에 따른 럼블스트립의 교통사고 감소효과)

  • Oh, Heung-Un
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.289-294
    • /
    • 2010
  • It is well known that rumble strips contribute to reduce traffic accidents. The present paper provides the reduction effect of traffic accidents under specific highway geometrics after rumble strip installation. Traffic accidents on freeway sections before and after rumble strip installation are compared when conditions of the highway geometric characteristics such as horizontal, vertical geometrics are given. It is shown that rumble strips are effective under highway geometric conditions of down slopes or right curvatures. It is also shown that rumble strips are still effective with shorter length of installation.

Stability Condition for Discrete Interval Time-varying System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 안정조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.475-481
    • /
    • 2016
  • In this paper, the new stability condition of linear discrete interval time-varying systems with time-varying delay time is proposed. The considered system has interval time-varying system matrices for both non-delayed and delayed states with time-varying delay time within given interval values. The proposed condition is derived by using Lyapunov stability theory and expressed by very simple inequality. The restricted stability issue on the interval time-invariant system is expanded to interval time-varying system and a powerful stability condition which is more comprehensive than the previous is proposed. As a results, it is possible to avoid the introduction of complex linear matrix inequality (LMI) or upper solution bound of Lyapunov equation in the derivation of sufficient condition. Also, it is shown that the proposed result can include the many existing stability conditions in the previous literatures. A numerical example in the pe revious works is modified to more general interval system and shows the expandability and effectiveness of the new stability condition.

A Study on the development of GEOCON for the Geometry Control of Precast Segmetnal Bridges (II) (프리캐스트 세그멘탈 교량의 선형관리를 위한 GEOCON의 개발에 관한 연구(II))

  • 이환우;김종수;곽효경
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.2
    • /
    • pp.127-135
    • /
    • 1998
  • 프리캐스트 세그멘탈 교량의 3차원적인 선형관리를 수행할 수 있는 S/W로서 GEOCON이 개발되었다. GEOCON은 기본적으로 제작장에서 세그멘트 제작관리를 통한 선형관리를 실시하고, 그 결과로서 자동적으로 계산되는 제작선형은 가설시 선형관리에 활용된다. 본 논문에서는 실제 현장에서 나타날 수 있는 검측오차등으로 인하여 수치계산상으로는 마치 정확한 선형관리가 이루어지는 것으로 나타날 수 있는 상황들을 방지하기 위해 GEOCON에서 채택하고 있는 기술적인 특징들에 대하여 논하고 있다. 또한 실제 현장적용을 통하여 GEOCON의 효용성을 검증하였다. GEOCON을 통하여 선형관리된 부산항 배후도로 현장은 총 길이 2109m의 프리캐스트 세그멘탈 교량구간을 포함하고 있으며 고임판의 사용없이 허용 관리치 내에서 매우 정확한 선형관리가 이루어졌다.

Design of Flexible BIM System for Alignment-Based Facility (선형기반 시설물을 위한 Flexible BIM 시스템의 설계)

  • Lee, Seung Soo;Lee, Min Joo;Jeong, Jong Yoon;Seo, Jong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.677-685
    • /
    • 2014
  • Despite the significant benefits of BIM (Building Information Modeling), it is not being vitalized for the facilities that are designed based on the horizontal and vertical alignments because of the lack of flexibility in manipulating surface models generated based on alignments. Alignment-based design produces a surface model in one piece through the definition of the typical cross-section along the alignment. Therefore, linking these alignment-based 3D surface models, that are not modularized and difficult to partition, to the required attribute information is very difficult This paper presents design of a flexible BIM technology suitable for the alignment-based civil infrastructure by providing the partitioning functionality for surface models, the contents library for cross-sectional design components, and the attribute information along with the critical functionalities needed for the design, construction and maintenance of alignment-based civil infrastructure.

Dynamic Nonlinear Prediction Model of Univariate Hydrologic Time Series Using the Support Vector Machine and State-Space Model (Support Vector Machine과 상태공간모형을 이용한 단변량 수문 시계열의 동역학적 비선형 예측모형)

  • Kwon, Hyun-Han;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.279-289
    • /
    • 2006
  • The reconstruction of low dimension nonlinear behavior from the hydrologic time series has been an active area of research in the last decade. In this study, we present the applications of a powerful state space reconstruction methodology using the method of Support Vector Machines (SVM) to the Great Salt Lake (GSL) volume. SVMs are machine learning systems that use a hypothesis space of linear functions in a Kernel induced higher dimensional feature space. SVMs are optimized by minimizing a bound on a generalized error (risk) measure, rather than just the mean square error over a training set. The utility of this SVM regression approach is demonstrated through applications to the short term forecasts of the biweekly GSL volume. The SVM based reconstruction is used to develop time series forecasts for multiple lead times ranging from the period of two weeks to several months. The reliability of the algorithm in learning and forecasting the dynamics is tested using split sample sensitivity analyses, with a particular interest in forecasting extreme states. Unlike previously reported methodologies, SVMs are able to extract the dynamics using only a few past observed data points (Support Vectors, SV) out of the training examples. Considering statistical measures, the prediction model based on SVM demonstrated encouraging and promising results in a short-term prediction. Thus, the SVM method presented in this study suggests a competitive methodology for the forecast of hydrologic time series.