• Title/Summary/Keyword: 선형전동기

Search Result 539, Processing Time 0.029 seconds

Optimum Shape Design of Single-Sided Linear Induction Motors Using Response Surface Methodology and Finite Element Method (반응 표면법과 유한 요소법을 이용한 편측식 선형 유도 전동기의 형상 최적 설계)

  • Song, Han-Sang;Lee, Jung-Ho;Lee, Seung-Chul;Lee, Byeong-Hwa;Kim, Kyu-Seob;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1057-1058
    • /
    • 2011
  • This paper deals with finding the optimal ratio of height and length of Single-Sided Linear Induction Motors (SLIM) using Finite Element Method (FEM) for magnetic field analysis coupled with optimal design methodology. For effective analysis, FEM is conducted in time harmonic field which provides steady state performance with the fundamental components of voltage and current. The ratio of height to length providing the required output power is obtained by Response Surface Methodology (RSM) and optimal values are presented by the variation in output power. When output power is small, the ratio is high and as the power increases, the ratio shows a converged value. Considering the general application of linear motors, using a small ratio can be limiting, however, the shape ratio for maximum thrust can be identified.

  • PDF

Design of Linear Synchronous Motor for Thrust Force Ripple Reduction using Module Phase Set Shift (Module Phase Set Shift를 이용한 선형 동기 전동기의 추력 리플 저감 설계)

  • Ryu, Gwang-Hyeon;Lee, Hyung-Woo;Cho, Su-Yeon;Oh, Se-Young;Ham, Sang-Hwan;Im, Jong-Bin;Ahn, Han-Woong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.848-849
    • /
    • 2011
  • Rotating machines are using gears to change the rotary motion into the linear motion, on the other hand, linear motors have a accurate position control and excellent dynamic characteristics because of generating a thrust force directly. But the important problem, one of the linear motor is a high thrust force ripple. Thrust force ripple has a bad effect on the position accuracy and the dynamic characteristics, so it is necessary to reduce the thrust force ripple. Cogging is one of the cause that affect thrust force ripple. Cogging has some connection with the GCD between pole pitch and teeth pitch It is proposed method to reduce a thrust ripple of the linear motor that chamfering, skew, and so on. In this paper, the module phase set shift(MPSS) is used to reduce a thrust force ripple that has a similar effect to skew. And propose a method that reduce a thrust force ripple more by use of chamfering.

  • PDF

A New Slip Power Recovery System by Switch Mode Converter (스위치모드 컨버터에 의한 새로운 슬립전력 회수시스템)

  • 박한웅;박성준;김철우;황영문
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.73-81
    • /
    • 1999
  • A new slip power recovery system applying a switch mode converter to the rotor circuit of the wound rotor induction machine is proposed and investigated in this paper. With the analysis of the steady-state performances of the proposed system, it can be shown that the speed can be controlled by the duty ratio of the converter switch and the several characteristics of a conventional system can be also improved. In particular, the low power factor and the harmonic components in the line current, which are the main disadvantages of the conventional system, is significantly improved, and linear speed regulation can be obtained. Theoretical and experimental results are presented and illustrated to demonstrate the satisfactory working of the proposed system.

Characteristic Analysis of Superconducting LSM for the Wheel-rail-guided Very High Speed Train according to Winding Method of the Ground 3-phase Coils (휠-레일 방식 초고속열차용 초전도 선형동기전동기의 지상권선 방식별 특성 분석)

  • Park, Chan-Bae;Lee, Byung-Song;Lee, Chang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1164-1169
    • /
    • 2014
  • Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is based on wheel-rail method, but it enables to overcome the speed limitation by adhesion because it is operated by a non-contact method using a linear motor as a propulsion system and reduce the overall construction costs by its compatibility with the conventional railway systems. Therefore, the design and characteristic analysis of a coreless-type superconducting Linear Synchronous Motor (LSM) for 600km/h very high speed railway system are conducted in this paper. The designed coreless-type superconducting LSMs are the distributed winding model, the concentrated 1 layer winding model and the concentrated 2 layer winding model, respectively. In addition, the characteristic comparison studies on each LSM are conducted.

A Study on Transient Analysis of Linear Induction Motor with Ununiform Airgap for Shallow-depth Underground Train (저심도철도용 선형유도전동기의 공극 불균일 과도특성 분석 연구)

  • Lee, Hyung-Woo;Park, Chan-Bae;Won, Sunghong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.723-729
    • /
    • 2013
  • This paper presents an parallel type Linear Induction Motor with ununiform airgap for a shallow-depth underground train with 100‰ grade and 15 m curvature. This parallel type LIM has enough gradability but has inherently ununiform airgap between center and end parts. Consequently, performance when the train passes curved section should be considered with transient analysis. Moreover, general parallel operation, 1C2M which is usually used for train operation, deteriorates LIM performance because of different line velocity between inner and outer LIMs. Transient analysis has many problems such as huge model, lots of meshes, very long calculation time, truncation error and so on. This paper has presented a novel technique using equivalent linear rotating model in order to solve these problems and has analyzed parallel type LIM by using the proposed technique. Finally, LIM performance according to independent operating control has been investigated.

New Optimal PWM Scheme for Minimizing the Harmonic Effects of VSI-PWM Inverter (VSI-PWM 인버터의 고주파 영향을 최소화하기 위한 새로운 Optimal PWM 방식)

  • 이윤종;이일형;정동화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.11
    • /
    • pp.886-897
    • /
    • 1990
  • This paper is proposed new optimal PWM scheme is based on a defined linear relationship between the successive pulsewidths of the PWM pattern. The calculation of the pulsewidths in the new PWM scheme is caried out without referring to the equations of CW and MW. With this scheme the PWM pattern for microprocessor controlled inverters can be composed easily by obtaining the optimal increment in sucessive pulsiwidths of the pattern. Furthmore, the harmonic level at the output of PWM inverter are always very low because this PWM pattern is selected on the basis of minimum THD. Theis scheme is applied to 1(Hp), three phase induction motor, and compared with conventional regular PWM scheme. The results of calculations and experiments show that new optimal PWM scheme could provide an effective generalized approach for minimization of harmonics in the VSI-PWM inverter.

  • PDF

The Characteristic Analysis of Vector Control in a Linear Induction Motor Considering Static and Dynamic End Effects (정적 및 동적 단부효과를 고려한 선형 유도 전동기의 벡터제어 특성해석)

  • Kim, Dae-Gyeong;Gwon, Byeong-Il;U, Gyeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.413-424
    • /
    • 2002
  • Recently, in the linear motion system, high performances are required In dynamic characteristics. Vector control method is capable of instantaneous thrust control can meet these high performance requirements. Linear induction motor(LIM) have static and dynamic end effects due to its finite core length, so that per-phase impedances are asymmetric and an air gap flux distribution is distorted. These points of the d-q axis equivalent circuit model considering both end effects is more complicated. This paper proposes the d-q axis equivalent circuit and the vector control method considering both static and dynamic end effects of the LIM. As a result, it is shown that the results of the equivalent circuit method(ECM) have a good agreement with those of the finite element method(FEM).

A study on the vibration of 2-phase HB type Linear Stepping Motor (2상 HB형 선형 STEPPING 전동기의 진동해석에 관한 연구)

  • Oh, H.S.;Jung, E.N.;Sim, S.H.;Lim, Y.H.;Lee, S.K.;Shim, J.S.;Shim, N.S.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.852-854
    • /
    • 2001
  • In this paper, the vibration characteristics of a 2-phase Hybrid type Linear Stepping Motor(HLSM) are analyzed using the ACSL. A magnetic equivalent circuit is based on the structure of the HLSM, and then the electric equivalent circuit of the HLSM is derived by solving equations for the magnetic equivalent circuit. A normal force is calculated using FEM(Flux2D). And the vibration characteristics(Continuous vibration) of the HLSM are simulated by the ACSL with the voltage equations, the thrust equation, the normal force equation and the kinetic equation.

  • PDF

A Loss-Minimization Nonlinear Torque Control for Electrical Vehicle Induction Motors (전기자동차용 유도전동기의 에너지 손실을 최소화하는 비선형 토크 제어기 설계)

  • Jang, Jin-Su;Han, Byung-Jo;Hwang, Young-Ho;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1838-1839
    • /
    • 2006
  • In this paper, a loss-minimization nonlinear torque control for Electrical Vehicle(EV) induction motors is proposed. To improve the efficiency of the induction motors, it is important to find the optimal flux reference that minimize power losses. The proposed optimal flux reference is derived using a power loss function that is constructed with stator resistance losses, rotor resistance losses and core losses. And the time-varying load torque and the rotor resistance variation are considered in the power loss function. An algorithm that identifying the load torque is used. The rotor flux observer is used to obtain an accurate flux value regardless of the rotor resistance variation. Simulation results show a significant reduction in energy losses.

  • PDF

LINBAR DECOUPLING CONTROL OF ROTOR SPEED AND ROTOR FLUX IN INDUCTION MOTOR FOR HIGH DYNAMIC PERFORMANCE AND MAXIMAL POWER BFFICLENCY (동적 고성능과 최대 전력 효율을 위한 유도 전동기 회전자 속도와 회전자 자속의 선형 비간섭 제어)

  • Kim, Dong-Il;Ha, In-Joong;Ko, Myoung-Sam;Park, Jae-Wha
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.48-53
    • /
    • 1989
  • We attempt to achieve both high dynamic performance and maximal power efficiency by means of linear decoupling of rotor speed (or motor torque) and rotor flux. The induction motor with our controller possesses the input-output dynamic characteristics of a linear system such that the rotor speed (or motor torque) and the rotor flux are decoupled. The rotor speed (or motor torque) responses are not affected by abrupt changes in the rotor flux and vice versa. The rotor flux need not be measured but is estimated by the well-known flux simulator. The effect of large variation in the rotor resistance on the control performances is minimized by employing a parameter adaptation method. To illuminate the significance of our work. we present simulation and experimental results as well as mathematical performance analyses.

  • PDF