• Title/Summary/Keyword: 선형연산자

Search Result 42, Processing Time 0.025 seconds

Weighted Kirchhoff Prestack Depth Migration using Smooth Background Model (Smooth Background Model(SBM)을 이용한 가중 키리히호프 중합전 심도구조보정)

  • Ko, Seung-Won;Yang, Seung-Jin;Shin, Chang-Su
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.84-88
    • /
    • 2001
  • For the elastic migation, the velocity errors between the initial velocity model and true velocity model seriously affect the migrated images. The assumption of an initial velocity model, thus, is one of the critical factor for the successful migration. In case of applying the layered earth model as an initial velocity model, the layer boundary having large velocity contrast can not be defined well with conventional traveltime calculation algolithms and we have the difficulties for expressing the characteristics of the real subsurface. Smooth Background Model (SBM) we have applied as an initial velocity model in our study is characterized to be linearly varying the velocity with the depth, which can express the velocity variation in the subsurface properly. Thus it can properly be applied to traveltime calculation algolithms such as Vidale's method. In this study, Kirchhoff operator for prestack migration was used and the absolute amplitude obtained by modeling was applied as a weighted value to consider the true amplitude for initial model. Initial velocity model for migration was determined by using stacking velocity and we applied this model to real data.

  • PDF

Fuzzy System Optimization Based on RCGKA and its Application to Time Series Prediction (RCGKA기반 퍼지 시스템 최적화 및 시계열 예측 응용)

  • Bang, Young-Keun;Shim, Jae-Sun;Park, Jong-Kuk;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1644_1645
    • /
    • 2009
  • 본 논문은 비정상 시계열 예측을 위한 다중모델 퍼지 시스템과, 제안된 시스템의 최적화를 위한 유전 알고리즘의 응용을 다룬다. 일반적으로, 퍼지 예측시스템의 성능은 비선형 데이터가 가지고 있는 다양한 패턴이나 법칙성, 경향 등을 잘 분석하고 시스템에 반영함으로써 개선될 수 있다. 따라서, 본 논문은 원형 시계열의 특성을 보다 잘 반영할 수 있는 그들의 차분데이터를 시스템에 적용하며, 생성 가능한 차분 데이터들 중 원형 시계열의 특징에 가까운 일부를 추출하여 다중모델 퍼지 예측 시스템을 구현함으로써 다양한 원형시계열의 패턴이나 법칙성 등이 고려될 수 있도록 하였다. 다중 모델 퍼지 시스템의 각각의 예측기에는 구조가 간단한 k-means 클러스터링 기법을 적용하여 구현의 용이성을 꽤하였으며, 성능평가를 통해 선택된 최종 예측기는 RCGKA(real-coded genetic k-means clustering algorithms)를 통해 더욱 최적화된 규칙기반을 가지게 함으로써 예측성능이 개선될 수 있도록 하였다. 본 논문에 사용된 최적화 기법인 RCGKA에는 또한 성능이 우수한 다양한 유전연산자를 도입하여 더욱 예측기 성능이 강화될 수 있도록 하였으며, 시뮬레이션을 통해 제안된 예측시스템의 효용성을 증명하였다.

  • PDF

A Distributed Hybrid Algorithm for Glass Cutting (유리재단 문제에 대한 분산 합성 알고리즘)

  • Hong, Chuleui
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.343-349
    • /
    • 2018
  • The proposed hybrid algorithm combines the benefits of rapid convergence property of mean filed annealing(MFA) and the effective genetic operations of simulated annealing-like genetic algorithm(SGA). This algorithm is applied to the isotropic material stock cutting problem, especially to glass cutting in distributed computing environments base on MPI called message passing interface. The glass cutting is to place the required rectangular patterns to the given large glass sheets resulting in reducing the wasted scrap area. Our experimental results show that the heuristic method improves the performance over the conventional ones by decreasing the scrap area and maximum execution time. It is also proved that the proposed distributed algorithm maintains the convergence properties of sequential one while it achieves almost linear speedup as the problem size increases.

Finite Element Analysis for Vibration of Laminated Plate Using a Consistent Discrete Theory Part I : Variational Principles (복합재료적층판의 진동해석을 위한 유한요소모델 I. 변분원리의 유도)

  • 홍순조
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.85-101
    • /
    • 1994
  • A family of variational principles governing the dynamics of laminated plate has been derived using a variationally consistent shear deformable discrete laminated plate theory with particular reference to finite element procedures. The theoretical basis for the derivation is Sandhu's generalized procedure for the variational formulation of linear coupled boundary value problem. As the bilinear mapping to write the operator matrix of the field equations in self-adjoint form, convolution product was employed. Boundary conditions, initial conditions and probable internal discontinuity were explicitly included in the governing functionals. Some interesting extensions and specializations of the general variational principle were presented, which can provide many different finite element formulations for the problem.

  • PDF

Geopotentinl Field in Nonlinear Balance with the Sectoral Mode of Rossby-Haurwitz Wave on the Inclined Rotation Axis (섹터모드의 로스비하우어비츠 파동과 균형을 이루는 고도장)

  • Cheong, Hyeong-Bin;Park, Ja-Rin
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.936-946
    • /
    • 2007
  • Analytical geopotential field in balance with the sectoral mode (the first symmetric mode with respect to the equator) of the Rossby-Haurwitz wave on the inclined rotation axis was derived in presence of superrotation background flow. The balanced field was obtained by inverting the divergence equation with the time derivative being zero. The inversion consists of two steps, i.e., the evaluation of nonlinear forcing terms and the finding of analytical solutions based on the Poisson's equation. In the second step, the forcing terms in the from of Legendre function were readily inverted due to the fact that Legendre function is the eigenfunction of the spherical Laplacian operator, while other terms were solved either by introducing a trial function or by integrating the Legendre equation. The balanced field was found to be expressed with six zonal wavenumber components, and shown to be of asymmetric structure about the equator. In association with asymmetricity, the advantageous point of the balanced field as a validation method for the numerical model was addressed. In special cases where the strength of the background flow is a half of or exactly the same as the rotation rate of the Earth it was revealed that one of the zonal wavenumber components vanishes. The analytical balanced field was compared with the geopotential field which was obtained using a spherical harmonics spectral model. It was found that the normalized difference lied in the order of machine rounding, indicating the reliability of the analytical results. The stability of the sectoral mode of Rossby-Haurwitz wave and the associated balanced field was discussed, comparing with the flrst antisymmetric mode.

Adaptive Error Concealment Technique using a Variable Operating Region Algorithm based on MPEG-4 Coding (연산 영역 가변 알고리즘을 적용한 MPEG-4 부호화 기반의 적응적 오류 은닉 기법)

  • 김병주;권기구;이석환;권성근;김봉석;이건일
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.78-88
    • /
    • 2003
  • A novel adaptive error concealment technique is proposed using a variable operating region algorithm based on MPEG-4 coding. In the algorithm, a missing block is classified as flat or edge block based on local information from the surrounding blocks extracted using a Sobel operation in a variable operating region (VOR). In this case, the VOR is determined adaptively according to the number of edge directions in the missing block. 1;sing the classification, the flat blocks are then concealed by the Proposed mean based weighted bilinear interpolation (MWBLI) method, and the edge blocks by the boundary directional interpolation (BDI) method. Consequently, the use of the Proposed VOR improves the subjective performance in a curved edge region, while the adaptive processing based on block classification improves the objective performance. Experimental results confirmed that the proposed algorithm produced better results than conventional algorithms, both subjectively and objectively.

  • PDF

Bus and Registor Optimization in Datapath Synthesis (데이터패스 합성에서의 버스와 레지스터의 최적화 기법)

  • Sin, Gwan-Ho;Lee, Geun-Man
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2196-2203
    • /
    • 1999
  • This paper describes the bus scheduling problem and register optimization method in datapath synthesis. Scheduling is process of operation allocation to control steps in order to minimize the cost function under the given circumstances. For that purpose, we propose some formulations to minimize the cost function for bus assignment to get an optimal and minimal cost function in hardware allocations. Especially, bus and register minimization technique are fully considered which are the essential topics in hardware allocation. Register scheduling is done after the operation and bus scheduling. Experiments are done with the DFG model of fifth-order digital ware filter to show its effectiveness. Structural integer programming formulations are used to solve the scheduling problems in order to get the optimal scheduling results in the integer linear programming environment.

  • PDF

Efficient Hole Searching Algorithm for the Overset Grid System with Relative Body Motion (상대운동이 있는 중첩격자계에 효율적인 Hole Searching Algorithm 개발)

  • Lee, Seon-Hyeong;Chae, Sang-Hyun;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.995-1004
    • /
    • 2011
  • Object X-ray method commonly used for hole search in overset grids requires huge amount of time due to complicated vector calculations to search the cross-points as well as time-consuming hole search algorithm with respect to background grids. Especially, when the grid system is in motion relative to the background, hole points should be searched at every time step, leading to hung computational burden. To cope with this difficulties, this study presents an efficient hole search algorithm mainly designed to reduce hole searching time. To this end, virtual surface with reduced grid points is suggested and logical operators are employed as a classification algorithm instead of complicated vector calculations. In addition, the searching process is further accelerated by designating hole points in a row rather than discriminating hole points with respect to each background grid points. If there exists a relative motion, the present algorithm requires much less time because only the virtual surface needs to be moved at every time step. The hole searching time has been systematically compared for a few selected geometries.

Calculation of overtopping discharge with time-dependent aspects of an embankment failure (시간에 따른 제방붕괴 양상을 고려한 월류량 산정)

  • Kim, Hyung-Jun;Kim, Jong-Ho;Jang, Won-Jae;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.69-78
    • /
    • 2007
  • In this study, a time-dependent aspect of an embankment failure is considered to simulate a flood inundation map and calculate overtopping discharge induced by an embankment failure. A numerical model has been developed by solving the two dimensional nonlinear shallow water equations with a finite volume method on unstructured grids. To analyze a Riemann problem, the HLLC approximate Riemann solver and the Weighted Averaged Flux method are employed by using a TVD limiter and the source term treatment is also employed by using the operator splitting method. Firstly, the numerical model is applied to a dam break problem and a sloping seawall. Obtained numerical results show good agreements with experimental data. Secondly, the model is applied to a flow induced by an embankment failure by assuming that the width and elevation of embankment are varied with time-dependent functions. As a result of the comparison with each numerical overtopping discharge, established flood inundation discharges in the previous studies are overestimated than the result of the present numerical model.

An Image Segmentation Algorithm using the Shape Space Model (모양공간 모델을 이용한 영상분할 알고리즘)

  • 김대희;안충현;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.41-50
    • /
    • 2004
  • Since the MPEG-4 visual standard enables content-based functionalities, it is necessary to extract video objects from video sequences. Segmentation algorithms can largely be classified into two different categories: automatic segmentation and user-assisted segmentation. In this paper, we propose a new user-assisted image segmentation method based on the active contour. If we define a shape space as a set of all possible variations from the initial curve and we assume that the shape space is linear, it can be decomposed into the column space and the left null space of the shape matrix. In the proposed method, the shape space vector in the column space describes changes from the initial curve to the imaginary feature curve, and a dynamic graph search algorithm describes the detailed shape of the object in the left null space. Since we employ the shape matrix and the SUSAN operator to outline object boundaries, the proposed algorithm can ignore unwanted feature points generated by low-level image processing operations and is, therefore, applicable to images of complex background. We can also compensate for limitations of the shape matrix with a dynamic graph search algorithm.