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Finite Element Analysis for Vibration of Laminated Plate
Using a Consistent Discrete Theory
Part I : Variational Principles
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Abstract

A family of variational principles governing the dynamics of laminated plate has been derived using
a variationally consistent shear deformable discrete laminated plate theory with particular reference to
finite element procedures. The theoretical basis for the derivation is Sandhu's generalized procedure
for the variational formulation of linear coupled boundary value problem. As the bilinear mapping to
write the operator matrix of the field equations in self-adjoint form, convolution product was
employed. Boundary conditions, initial conditions and probable internal discontinuity were explicitly in-
cluded in the governing functionals. Some interesting extensions and specializations of the general
variational principle were presented, which can provide many different finite element formulations for
the problem,

1. Introduction

For composite laminates, the governing equations are quite complicated due to material
inhomogeneity and anisotropy. This makes analytical solutions difficult to obtain, Some solutions
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of the complete elasticity equations or plate equations have been obtained for problems with
simple lamination scheme and geometry. However, for laminated plates with arbitrary stacking
sequence, irregular geometry and mixed boundary conditions, the problem is intractable and use
of some approximation technique such as finite element method is inevitable. Finite element
procedures for obtaining approximate solution of boundary value problems are often based on
variational formulations. For systematic development of variational principles of the boundary
value problem, many researches have been done[1-8] and most recently Sandhu et al. [5-8] estab-
lished general framework for the coupled boundary value problem of multivariables by extending
Mikhlin’s basic theorem[1]. A coupled boundary value problem can be stated as

Ayu=1; on R; (1)
Ciui=g; on R, (2)

where A;, C; are the linear, bounded operators defined over the region R; and on its boundary ¢R;
:u, are the field variables ; f,, g are the given functions on R; and 0R;, respectively. For this

problem, variational formulation is stated as

=1

Q= Z{<U,, Aiju,—2f1>k+<ul, C”-uj—-2g1>,m} (3)

1=1}=1

if the operators A, are self-adjoint with respect to a certain bilinear mapping <, > and the

boundary operators C; are consistent with Ay, i.e.
n n n n
Z<VJ, AJiU1>R:<U;, ZIAAXUVJ>R+<VD ZIC:UUJ>C"R—Z<L1)’ Cljvi>5R (4)
1=1 1= 1= 1=1

where a subscript associated with bilinear mapping indicates the domain of definition. This
implies that Gateaux differential of the functional Q in (3) vanishes if Egs. (1) and (2) are satis-
fied. Inverse statement is valid, i.e., vanishment of Gateaux differential of Q means that (1) and
(2) are satisfied. In connection with application to the finite element procedure, it may be
necessary to allow for discontinuities of certain field variables along interelement boundaries
since some quantities may have limited continuity in approximation space, e.g., Wwhen
non-conforming element is used. Such discontinuity can be included in the variational formulation
by expressing it in the same form as the boundary conditions. In consequence, a variational for-
mulation of the boundary value problem is to find self-adjoint form of the field equations with re-
spect to certain bilinear mapping and boundary conditions consistent with the field operators. Re-
cently, Al-Gothani[12], following the procedure stated previously, presented a complementary
variational formulation of dynamics of laminated composite plate using the field equations of dis-
placement-based discrete laminate theory[9-11]. Various extended and specialized forms of the
general variational principles were discussed. However, there is another way to derive variational
principles,

i.e., direct variational formulation which gives other types of variational principles. Furthermore,
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the laminate theory used does not treat the effect of transverse shear deformation properly
which is important in the analysis of composite laminates. In this paper, we present variational
formulations of the dynamics of laminated plate allowing for nonhomogeneous boundary
conditions as well as internal discontinuities using a discrete laminated plate theory that
incorporates the effect of transverse shear deformation in variationally consistent manner|[13].
Both the direct and the complementary formulations are considered along with extensions and
specialization of general variational principles.

2. A Consistent Shear Deformable Discrete Laminate Theory

Differential Form of Field Equations
Consider a laminated plate with uniform thickness h, which is composed of arbitrary number of

thin layers and enclosed by a cylindrical surface S along its edge and two parallel planes R(Fig.
1). Each layer is homogeneous and orthotropic with its material axes not necessarily along with
geometric coordinate axes, All the layers are assumed perfectly bonded together. Using Car-
tesian reference frame, global coordinate axes are defined in a way that x, axes are on the bot-
tom surface of the plate and x; axis is normal to this plane. In addition, local coordinate system,
x¥, is defined for the k™ layer, but the range of x% is limited to the thickness of the layer. In the
following discussion, standard indicial notation is used. Summation on repeated indices is implied,
where the Latin indices take on the range of 1, 2, 3 and Greek indices take on 1 and 2(Fig. 2).

X,

[y
X;
JR— u K* laver
h X
] .
T t, Laver n
‘ t Layer
2 Leyer 4
h —f—
s Layer 3
| hed Laver 2
1 4 Layer 1

Fig- 1. Laminated Plate Fig. 2. Global and Local Coordinate Systems

in a Laminated Piate

The displacements are assumed over the thickness of k' layer as

ui(x, t)=Uk(xp t)+x5 gi(xp, t) (5)
u(x;, t)=w"(xg, t) (6)

where uf are the components of the displacement vector ; G5, w* are the associated displacements
at the bottom surface of the k' layer ; #% are the rotations of a cross section of the k™ layer : t is

time. For small deformation, the kinematic relations with (5) and (6) are
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eh=eirtxt wly, eb=0 el=g(gitw) -
where a comma indicates the partial differentiation with respect to the coordinates and

=t g (it (8)

For the k'™ layer, the dynamic plate equilibrium equations are given by
Ny P (TS — Th ™) — PAak—R* =0
QAFH(TS—T5™) —Pi# =0 (9)
My~ Qi Gt Th—R¥ G~ T*g=0

where superposed dots indicate time derivatives and

Q=[x Fi= [ fidxf (NG, M= (1, x)oly dx§

(F, G*;)zj;k (1, ¥ f5dx5 {P* R, Ik}=j;k (1, x5 (5% p* dx (10)

Here, T* and Tt denote the stres components of o5 on the top and bottom surfaces of the Kkt
layer, respectively : f; is the components of body force vector ; and t, and p* are the thickness
and mass density of the k™ layer.

For the k™ layer with a material symmetry about its middle plane, the plate constitutive
equations are obtained using stress-strain relations of elasticity in the definitions of stress
resultants.

N ASBY &5 .
= Q‘;=ZZ1 Mshehs (11)
L
Ml BiDE x5

where

[k BY, D)= (1 %5 (H?IQN dx§ (12)
L, =126

Here, Qf are reduecd elastic constants obtained by using generalized plane stress state and Apare
coefficients to be determined by material properties, thickness and stacking sequence of a lami-
nate. The coupled transverse shear constitutive equations in (11) derived by Hong[13] account
for the parabolic distribution over the thickness of a layer and interlayer continulity of trans-
verse shear stresses, Equivalently, the inverse relations of (11) can be stated as
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For these field equations, the following boundary and initial conditions need to be specified,

Nigrs—NE(xg, t) on Sx[0, ©),  MEm=M.(x5 t)  on Skx[0, o)

Q=Qk(xp, t) on S&[0, @),  d=ak(x; t) on Skx[0, )

¢E=¢’];(Xﬁ, t) on Skx[o, ©), uk—_-vflk(xﬁ, t) on S&x[0, ) (14)
ﬁl;(xﬂ, O)Iﬁl;o(xﬂ), ¢(xy, 0)=¢§o(xﬂ), W (xp, 0)=W§(Xﬂ)

{%(xp, 0)=Uk(xp), #E(x5, 0)=g5(xp), WX (g, 0) =wWr(xy) (15)

where a circumflex denotes the value of the prescribed quantity on S¥ ; ng are components of the
unit outward normal to S* : [0, ) is the positive time interval. The boundary segments S, S}
are complementary subsets of S* and so are S, S and S Sk Since the all the layers are assumed

to be perfectly bonded, the following continuity conditions of the displacements and stresses in
the layer interfaces are needed to complete laminate theory.

=g+t g5 and wHi=w* (16)

(K=t =a5T (x5 T=0) (17)

Through these continuity conditions, all the field equations defined for each layer are combined
to give the field equations of a laminate. Here, it should be noted that the stress continuities
have been already enforced in the equilibrium equations (9) by T¥,

Integral Form of Field Equations
To set up variational pinciple for laminated plates, it is necessary to write the field equations

in a way that the operator matrix is self-adjoint in a certain space. The self-adjointness of
operators is not an absolute notion, but rather, it is relative to a bilinear mapping. Thus, there
are two possible ways to set up variational formulation of the problem : one way is to find a bilin-
ear mapping that makes the field operators be self-adjoint and another way is to rewrite the field
equations in different form so that they can be self-adjoint with respect to a familiar bilinear
mapping. For the present problem, we follow the latter way following Gurtin’s procedure
although other ways may be chosen. The differential form of field equations are transformed to
the equiavalent integral form by applying Laplace Transform and taking inverse after appropri-
ate rearrangement, The procedure removes the time derivatives from the equilibrium equations
and includes initial conditions explicitly. For the field equations and boundary conditions given
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previously, the equivalent integral form is
Kinematics : t»ely=t*eX+xft*ly t *e‘;3=_12t*( gE+wk)
where

trely= Tt () trlm gt (gl

Equilibrium :

t*Nig sHt*(To— T3 ™) +t'F,— P*i —R*+Xk=0
t*Mepp— t* Qe+t (te Ti+G,) —R G —I*+Yi=0
Qi t*(T5—T5 ) +t*F—Prw*+Z"=0

where

XE=P* (G5A-t*05) +R* (ghtt7g)
YE=R* (GAt*ik,) +15 (ghtt+gs)
ZE =Pk (wh+-t*vik)

Constitutive Relations :

o e 2 B] ® ] ‘| 8] B
M Bl Digs | L ks iy By Dty || MY,
vQi=2ty A el (AW =ty 1 Q,

= =

Interlayer Continuity of Displacements :
£y =ttt trwr=tews !
Boundary Conditions :

t*N& np=t'N, on S%  t*MY n;=t*M, on S}
tQ=tQ onS, tdE=td  onsS}

t*¢'§=t*¢3{.‘ onSY, t*w=t*&* on S

Here, an asterisk(*) denotes convolution product

u‘v=ﬁ u(z)v(t—r1)dz

(19)

(20)

(21)

(22)

(23)

(25)
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3. Direct Variational Formulation

General Variational Principle
For a laminate composed of n layers, the field equation (18) — (23) in integral form can be writ-

ten in the self-adjoint matrix form as

AI Bl DI.Z 0 DI.J 0 - Dl.n—l 0 D)_n Ul —rl+50
o cC o 0 0---- 0 0 O =
A, B,D,; 0 D, 0 D, |]U: -,
0 C 0 o 0 o =, 0
Ay Byt oDy 0 Dy HJ ) RE (26)
0 0 0 0 =5 7 0
An—l Bn'-l Dn-l,n Un—l —_rn'l
0 CT En-l 0 —
A 10 —rn—:n
n n

where only the operators in the upper triangular region have been entered. The operators below
diagonal are adjoints of the operators above diagonal, i.e., the operator A; is adjoint of A; in the

sense of the bilinear mapping used to set up the variational formulation, 1.e.,
<y, v>R=[R u*v dv (27)

which is linear and nondegenerate[2,3]. Explicitly, the symbolic operators applying in (26) are :

—P*s 0 I -R* 0 0 0 0 0
ay 1 ay
k k
0 A v 0 -B, . 0 0 0 0
T, t* 0 0 0 0 0 0 0
-R*S 0 o -1"8 0 T 0 0 e
oy oy I
x k k
A, = 0 B, 0 0 -v'D . 0 0 0
0 0 T, t* 0 0 0 0
0 0 0 0 0 0 —p* 0o w8 9
Yy
0 0 0o 0 0 0 0 tA
0 0 0 0 0 -r8 -9 0
Y 9y
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Here, T? and T7 are specified shear stress components on the top and bottom surface of the plate

and é,5 is Kronecker’s delta. The boundary conditions consistent with the operator equations (26)

are

<ok e Ky k k ~ ;
UNagMs = N, on Si(x]) Mosm, = "M_ on S;(x:)

K. AR Kok ko -~k Kook
tQm, = Qm, on SixD) VUM, = Tm, on Si(x)) (28)

2K _ . ax koo k ko o K ke k
Vo T U,  on S(x) t*w n, = tWn, oon Si(x))

and internal jump discontinuity conditions are :
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* (N:ﬁ'r)ﬁ)' = t* (gt)a on S‘:i(x:) t* (MZBnB)'_ ,t*(gz)a on S;i(xi)

]

t*(Qi’f)a)' t*(g;)ana on S;i(xz) t*(UZnB)' =t*(g‘;)av)‘3 on S;(.\':) (29)
t* (¢:nﬁ)' = t*(g:)a’qﬁ on S:i(xi) t*(w"na)’ = t* (8:)"% on S:i(.\':)

By the definitions (4), following relations are satisfied between off-diagonal operators.

X X _ _x - _x x
<7 N S = — oy _ . N _k
N BB g <t Us 1\0'5>Rk <u_, t*‘\‘aﬂna>sk + <‘\a3' t"umnﬁ>sk (30)
1 2
-k " . X —k_ oy
_< x () + : *
Tt (~\aa’75) >5§‘- P <N, t (“J?;a) >Sk
|

2i

k ;\'Ik

k k
<d ,t*M > = — x _ k ik (K X
D, Mops™ <t ¢a.B' °‘3>R“ <é_, t"Mms‘r;ﬁ>S§ + <Ma‘3, t"‘<j>a'r]5>sk (31)
4

X
3

k
4

— kox(\* ‘ k k__y
<¢_.t (Muﬁnﬁ) >a t <M. (@, my) >

x k _ k x K K
<wo, T* > - - P _ , " k R
Qa.a Rk <t v',ar' Qo>Rk ' <“ ' t*Qono>Sk ' <Qa' (*“ na>sk (32)
S (3
k k .
T <Q.tlwin ) > |

k .
—<w®, *x(Q*n ) >
e s$| 6i

Thus, using the Eq. (3), the governing functional for the operator equations (26) is defined as

n n-1 n
_ T T - T =
Q=3 <U AU> 4 <Uk,Bk_k>Rk+Z <U.CEZ_ >,
k=1 k=1 k=2

n n n
T
+ < - . =
22 <U,D,U>, ~% <UD U, >t > <Z . B'U >

k=1 j=1 k=1 -
n-| n
+ 3 <=z, c’u_ > 49 T T o= -
k;] K K1 Rk+~kZ: <Uk’rk>Rk—2<Ul':O>Rl
=1
T -
+2<U = >R"‘ + Boundary Terms # Internal Jump Terms (33)

It is easily shown that the Gateaux differential of (33) vanishes if and only if all the field
equations along with the boundary conditions and internal jump discontinuity conditions are satis-
fied. Thus, the functional (33) is a variational formulation governing the dynamics of laminated

plate.

Extensions and Specializations
The relations (30) — (32) may be used to eliminate either of N¥ zor @ either of M 4or ¢4 and
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either Q}, or W from the governing functional Q in (33). This means that the requirement of
differentiability of those variables is relaxed, thereby extending the space of admissible states in
the functional. In the context of finite element procedure, it is clear that the extension of the ad-
missible space provides greater freedom in selection of approximation function. Also, such exten-
sion leads to numerous different formulations, e.g., elimination of derivatives of all the stress
variables leads to displacement formulation, elimination of derivatives of all the kinematic
variables leads to stress formulation and selective elimination of derivatives of stress and
kinematic variables leads to so-called mixed formulation.

In addition, if the admissible state of variables is constrained to satisfy some field equations
and /or boundary conditions, certain specialized forms of the variational principle are obtained.
This procedure is used to reduce the number of field variables in the governing functional, which
is advantageous in the finite element formulation if the constrained condition can be satisfied
easily. Also, specialized functional with certain assumptions in the spatial and temporal variation
of some variables can lead to approximate theories.

To illustrate the procedure of extension and specialization of the general governing functional,

we consider Q. Eliminating Nf;3 M¥sand Q, from it by using (30) —(32), we have

n
_ ok kX _ kK k,k kK ok X
Q, E { <T_, P u°l>Rk <<¢>‘!,I<;‘>m>Rk — <w", P'w >Rk
k=1

_k kK _k k o~k X
—<E _,t*A - * - T, R*¢*
wf n'ﬁy6ey6>Rk <Kuﬁ. t D‘,By<s’f<_75>Rk 2<u°, R <;‘)a>]Rk

k

-k k - k k k
+2 <N, (@ “a.a)>Rk +2<M g, t*(;<oﬁ—c,6°_ﬂ)>Rk
k k x
5 w9k gk _ X 3 k
2<Q, .t (.,euJ b v..a)>Rk 2<E 5t Baﬁy5K76>Rk}

n n
L SR ¥ I
+ZZ <2e°3, 2t )\05653>Rk
k=l j=1

n-1

ko yk kK _ke+l k X kel
AT, (@ + 1, ) o )>Rk + <T,, (v —w )>Rk}
k=1

n
T k k k k k k
+2KZ{ ST UF HX>  + <er, G Y, > F <wL rF +Z > )
-1

=l 0 _ 1 o
2<u°,t Ta>Rl 2<w ,t“’I'J>R

1

+2<._n 'Y n n * n n ~N
o .t T°>R" + 2<¢a, t tnTD>Rk +2<w, t""13>Rn
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n
—k rk k ~ k
+3 {-2<1T,, t*r\a>s,; —2<p., M >
k K

K Ak "
—2<w, Q.M >Sk +2 <N, o (T nﬂ—u nﬁ) > o«

H 2

k k k k k  k
+2 <M_g. t‘(¢anﬁ—¢anﬁ) >o ¥t 2 <Q., (w'n —w'n) >

4 3

n
+ 3 {—2<al, (gD, > 2<¢l, (g}, >

1i k1
k=1 '

. . — . 1 4
—2<Wk , (g:)ana>sk + <N:rﬁ U ((u:rnﬁ) - 2(22)‘,7)[3) >$;
si

. x k Xy X
+ <M‘;B, t*((¢:7)5) _2(34)0775) > +<Ql, rlw m,) -2(g,n) >s:., (34)

4i

where all the stress resultants do not need differentable, so their admissible space is extended. If
we specialized Q to identically satisfy the kinematic relations (19) and interface continuity

conditions of displacements (23),
k-1 -1
1 gkt 1ok i Pk i
Q,=-y{<u,, PT>, +2<0,FP 2>t <re, P s>
i i=1 =1

—1
+<et, I“qs‘;>Rk + <w, P“w>Rk +2<u,, R'¢.>

k-1
i K,k 1 Ak 2!
+2<Ztl¢a, R <1>0>Rk t<E AL E T

=]

x-1
K x Ak J
+2<E, ., Byéztx >t <Zlii\°ﬁ, t AOBYBZIJ}\75>R\
=1

X * X X o k k x k
+<Koﬁ’ t Daﬂy6K76>R + 2<e of’ B03Y5K75> 2<Z‘K 5t oByC y6

>}

—ZZ <2ek,, 420N peys >

k=1 j=1

n
i X -k
Y <ul, vFXi> o+ <Frd CF N>
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+<", UG +Y > 4+ <w, F 2> )
o o o gk 3 R*
o Rﬂ

—2<t!, T  —2<w, 19> +2<T . xT">
o o R‘ 3 Rl o

T2 e, tIL> 4 2<w, o TI>

i=1

(35)

which is the potential energy type variational principle for Sun’s theory[9]. Equivalently, we can
eliminate ¢; instead of G and, then, it becomes the variational formulations of Srinjvas’ [10] or

Seide’s theory[11].

—k pkk 1 kel _kyrkeo ksl Lk - ok
Q, = Z {—-<ua, P uu>Rk — —2—<(ua uo),I (ua um)>Rk <w,P W>Rk
k=1 1
Y T _ 1 Skl ok 5 )
—<E .t Aaﬁy&eyé>Rk —Z<(e°ﬁ €40 ﬁyé( eaB) &
Y
2 __x « gk (g%l _ 2 _x gk gt s
—<Ey B B —ED> - T <E RA(T, o ot
K

N
+ZZ <2t -2t Aas®s3 >

k=1 j=1

n
_ X ok 1 _k~1
+2% { <m, FL+X'> LT = <@ G .
R* t R
K

0
+ <w,vFi+Z'> )} —o2<ul, “TO.>R1 —2<w, T, > |
R [} o

- _k k s n
l<Ukl-—u y LT o> o 2<w, T, > |
t o o n o R R

~k+l __k x vk o . & AK
&3 <@  -u).t MO)>S; 2<w, t Qan°)>S§ (36)
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In connection with finite element formulation, it is worth noting that use of ©; may be more con-
venient if in-plane stretching of individual layer needs to be specified. Clearly, a large number of
specializations from other extended variational principles are possible even if they are not listed
here, and some representative cases presented in Fig. 3.

Q : Governing function

Fxtension
Displacement - a’mcs‘ e
Formulation Formulation

o N

Eliminate Eliminate
Eliminate M . 0% . w e . M, Q. b
. S el e iminate
N M Q' - . '
T T T Mo 04 whe
-0, Eliminate FEliminate
N's . oh . whe % . Ns . Q'
—— R L2 —
- ‘ Eliminate Eliminate
Specialization
T -

W oW
Ka jump dicont.

‘ Satis{y kinematics

A S
Satis{y cont.of
in-plane displs.
Displ. B.Cs Fig. 3. Family of Direct Variational Principles

— Q7 or Q4

4. Complementary Formulations

An alternative procedure to set up variational principles governing the problem is to write the
operator equations in complementary form instead of the direct formulation (26). Assuming the
kinematic relations (18) are satisfied, the field equations (20)—(22) may be written in the
self-adjoint form with respect to the bilinear mapping (27) as :

Al Bx Ex.z 0 Ex.s 0 - Ex.n—x 0 El,n U, -r, +EO
oc o o o°- 0 0 0 =)
A, B,E,; 0"~ Ez,n—l 0 E,, U T,
o C' o 0 o0 o0 =2 0
Ay By EJ,n—I 0 E;, Us e (37)
0 o 0 =, 0=| o
An—l Bn-—l En—l.n Un—l _rn—l
0 CT :n-l 0
A llu | T5T7
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Consistent boundary conditions associated with the operator equation (37) are :

—tNym,=-t*K_ on S} —t*M_m, = —¥_ on S}

k Ak k k 2k k
—-t*Q,n, = —t*Q,n, on S I R on §, (38)
t* ¢:nﬂ = t* &:nﬂ on S: t* wk-r)a = t* \?«'kna on S:

and the internal jump discontinuity conditions are :

-t (Nm,) = —t*(g}), on S}, —t+ (M5 m,) = —t*(g}), on S},

—(Qpn,) = —(gdn,  on Sf w(wn) = vy, oS, (30)

3

t*(¢>:nﬁ)' = t“(g‘;)a*r)f3 on S t(wkn) = (gg)m, on S,

41

By the definitions (4), the following relations between off-diagonsl operatord are satisfied.

=k gk o e 1k N Wk . =K
<u_,t I\aB.5>Rk <t Tog I\aB>R‘= + <T_,t .\aﬂnﬁ>sr + <'\aﬁ' T uanﬁ>s;
A 1 . K ek
+ <U_,t (N,Bnﬁ) >ST; + <Nt (“J’g) >S;
K _aagk R 1 3 k k x k
<Py TMegp> = = <TGl ML> L+ <éy, EMmg> ¥ <My >,

(40)

k k ’
t<gy M gmp) s s
i

+ <ML, v (@in) >

k
s

X

Kk ek e m kK R X
<w ,t Qa'a>Rk =—-<ttw_, Qa>Rk + <w ,t"‘Qm'nm>s
6

+ <Q:, t* wk'r]a>S

k
6i

Fowt Q) >+ <QlL elwin ) >

Si

For the matrix equation (37), the governing functional is obtained, following (6), as

n n-1 n
_ T T - T -
J_Z <Uk’AkUk>Rk+Z <Uk'Bk~‘x>Rk+ Z <Uk’c"x-1>kk
k=1 k=1 k=2

n n n
T T
+Z,Z <Uk'Eijj>Rk - Z <U.E,U, >Rk
k=1 j=1 k=1
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n-1 n-1
=T T ~T T
+Z<:k’BkUk>Rk+ <E.CU. >,
k=1 k=1
n
T T T
+23 <Upar >, —2<U L 50> +2<U, 5 >

k=1

+ Boundary Terms + Internal Jump Terms (41)
Using Seide’s discrete laminate theory[11], Al-Gothani[12] presented the complementary formu-
lation of laminated composite plate for the dynamic case. The formulation is the same as the one
given above, except for that the operator matix in (36) includes matrix E; representing the
coupling of transverse shear constitutive relations between layers based upon the consistent
shear deformable theory[13]. Consequently, if this terms are taken account of, most discussions
given by him is applicable to the present formulation. Thus, extensions and specializations of the
general variational principle (40) are not repeated here, but some ways of its extensions and
specializations which lead to interesting form of variational principles are presented in Fig. 4.

Extension

Formulation

|

Eiiminate
Ns . M . Qb
—v dy

|

l Fliminate

[T LTI

‘ J 1 Complementary l

Governing Function

Mixed
Formulation

z

LT

|

Eliminate
w

o My wh

Eliminate 7'

Eliminnte

Tn . 0%, whs

Specialization

T Eliminate
(X whe N%s . M

Satisfy Equil.Eqs.

Fig. 4. Family of Complementary Variational Principles T
Satisfy Stress R.C,

5. Discussion

Based on the discrete laminated plate theory, which accounts for the effect of transverse
shear deformation in a consistent manner, a systematic development of variational principles for
dynamics of linear elastic composite laminated plate has been presented. The direct as well as
complementary formulations are considered. Complementary self-adjoint form of the field
equations is the same as the one presented by Al-Gothani[12], except for the coupling terms of
transverse shear constitutive equations between layers which have been introduced in the con-
sistent shear deformable theory[13]. Nonhomogeneous boundary conditions and internal jump
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discontinuity have been explicitly included in general variational principle. Allowance of jump
discontinuity terms in variational formulation is meaningful in the context of direct approxi-
mation in finite element spaces since the space of approximants may not be sufficiently smooth.
Also, extensions of the general variational principle and specializations by restricting some of the
field equations and /or boundary conditions to be identically satisfied have been discussed and
depicted diagrammatically in Fig. 3 and 4, respectively, for the direct and complementary formu-

lation. These formulations should provide a basis for the development of alternative approaches
to approximate solution of the problem and also for the development of approximate theories.
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