• Title/Summary/Keyword: 선형보간법

Search Result 249, Processing Time 0.027 seconds

A Study on Pathological Pattern Detection using the quasi-Bisymmetry of MRI DWI Brain Image (MRI 확산강조 뇌영상의 유사대칭성을 이용한 병변검출에 관한 연구)

  • Kim, S.H.;Lee, H.W.;Lee, J.W.;Jeong, W.G.;Gang, Ik-Tae;Lee, G.K.
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.4
    • /
    • pp.37-44
    • /
    • 2009
  • Stroke patients are the most in the cause of death among Koreans. Therefore, an accurate diagnosis of stroke is very important. But, it is the only way to diagnose strokes that the doctors see the MRI image and detect the pathological pattern. In this paper, we proposed the new method to detect the pathological pattern of a suspected stroke. We used the quasibi-symmetry of the MRI brain image in our new method. we detected pathological pattern applied the proposed method, and show the result.

  • PDF

Evaluation of Vertical Bearing Capacity of Bucket Foundations in Layered Soil by Using Finite Element Analysis (유한요소해석을 통한 다층지반에서의 버킷기초 수직지지력 산정)

  • Park, Jeong-Seon;Park, Duhee;Yoon, Se-Woong;Saeed-ullah, Jan Mandokhai
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.35-45
    • /
    • 2016
  • Estimation of vertical bearing capacity is critical in the design of bucket foundation used to support offshore structure. Empirical formula and closed form solutions for bucket foundations in uniform sand or clay profiles have been extensively studied. However, the vertical bearing capacity of bucket foundations in alternating layers of sand overlying clay is not well defined. We performed a series of two-dimensional axisymmetric finite element analyses on bucket foundations in sand overlying clay soil, using elasto-plastic soil model. The load transfer mechanism is investigated for various conditions. Performing the parametric study for the friction angles, undrained shear strengths, thickness of sand layer, and aspect ratios of foundation, we present the predictive charts for determining the vertical bearing capacities of bucket foundations in sand overlying clay layer. In addition, after comparing with the finite element analysis results, it is found that linear interpolation between the design charts give acceptable values in these ranges of parameters.

Linear Static and Free Vibration Analysis of Laminated Composite Plates and Shells using a 9-node Shell Element with Strain Interpolation (변형률 보간 9절점 쉘 요소를 이용한 적층복합판과 쉘의 선형 정적 해석 및 자유진동 해석)

  • 최삼열;한성천
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.279-293
    • /
    • 2004
  • The analysis of linear static and free vibration problems of isotropic and laminated composite plates and shells is performed by the improved 9-node shell element with the new strain displacement relationship. In that relationship, the effect of new additional terms between the bending strain and displacement has been investigated in the warping problem. Natural co ordinate based strains, stresses and constitutive equations are used. The assumed natural strain method is used to alleviate both membrane and shear locking behavior from the element. The Lanczos method is employed in the calculation of the eigenvalues of laminated composite structures and the Gauss integration rule is adopted to evaluate the mass matrix. The numerical examples are compared with the analytical solutions to validate the current formulation and the results presented could be useful for the understanding of the behaviour of laminates under free vibration conditions.

Verification of Dose Evaluation of Human Phantom using Geant4 Code (Geant4 코드를 사용한 인체팬텀 선량평가 검증)

  • Jang, Eun-Sung;Choi, Ji-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.529-535
    • /
    • 2020
  • Geant4 is compatible with the Windows operating system in C++ language use, enabling interface functions that link DICOM or software. It was simulated to address the basic structure of the simulation using Geant4/Gate code and to specifically verify the density composition and lung cancer process in the human phantom. It was visualized using the Gate Graphic System, i.e. openGL, Ray Tracer: Ray Tracing by Geant4 Tracing, and using Geant4/Gate code, lung cancer is modeled in the human phantom area in 3D, 4D to verify the simulation progress. Therefore, as a large number of new functions are added to the Gate Code, it is easy to implement accurate human structure and moving organs.

Prediction of pollution loads in Geum River using machine learning (기계학습을 이용한 금강유역 옥천의 오염부하량 예측)

  • Lim, Heesung;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.445-445
    • /
    • 2018
  • 기후변화에 따른 환경오염은 21세기 인류에게 가장 심각한 문제 중의 하나로 대두되고 있다. 환경적인 측면에서 하천오염은 경제적으로 많은 문제를 발생시키고 있다. 이러한 하천오염 문제를 해결하기 위해서는 오염물질의 농도 측적 및 데이터 축적이 필수적이라 할 수 있다. 그러나 일반적으로 오염물질 부하량에 대한 직접적인 측정은 비용 측면에서 쉽지 않은 것이 사실이다. 또한 실시간으로 BOD, COD, TN, TP 등의 자료를 이용하여 예측하는 것에는 자료의 부족성으로 인해 한계가 있다. 본 연구에서는 구글의 딥러닝 오픈소스 라이브러리인 텐서플로우를 활용하여 기계학습을 통한 하천오염 예측을 목적으로 하고 있다. 기계학습을 위하여 텐서플로우를 활용하여 RNN, LSTM 인공신경망 모형을 구축하였다. 하천오염의 학습과 예측을 위해 결과치 분석을 위한 자료로는 금강 유역에 위치한 옥천 관측소 충청북도 옥천군 이원면 이원대교에 위치한 $36^{\circ}14'31.0''N$ $127^{\circ}40'02.6''E$의 관측소에서 BOD, COD, DO, 부유물질의 자료를 사용하였다. 모형의 학습을 위해서 입력자료는 수위, 유량, 평균기온, 평균풍속 자료를 2004년 ~ 2017년까지의 14년간의 자료를 사용하였다. 연구를 위해 BOD, COD, DO 부유물질 자료는 물환경정보시스템(http://water.nier.go.kr/)의 자료를 활용하고 수위, 유량등의 자료는 국가수자원관리종합정보시스템 (http://www.wamis.go.kr/)의 자료를 사용하였다. 그러나 수온, 수위, 풍속등의 자료는 일 자료가 있는가 반면 BOD, COD, TN, TP등의 자료는 일 자료가 있지 않아 이를 원활히 활용할 수 있도록 예측을 위한 결과치의 선형보간법을 통해 일 자료를 획득한 후 연구를 하였다. RNN, LSTM의 분석 시 학습속도, 반복시행횟수 sequence length의 길이 등의 값을 조절 하면서 결과치를 분석하였다.

  • PDF

Modeling and Analysis of Size-Dependent Structural Problems by Using Low-Order Finite Elements with Strain Gradient Plasticity (변형률 구배 소성 저차 유한요소에 의한 크기 의존 구조 문제의 모델링 및 해석)

  • Park, Moon-Shik;Suh, Yeong-Sung;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1041-1050
    • /
    • 2011
  • An elasto-plastic finite element method using the theory of strain gradient plasticity is proposed to evaluate the size dependency of structural plasticity that occurs when the configuration size decreases to micron scale. For this method, we suggest a low-order plane and three-dimensional displacement-based elements, eliminating the need for a high order, many degrees of freedom, a mixed element, or super elements, which have been considered necessary in previous researches. The proposed method can be performed in the framework of nonlinear incremental analysis in which plastic strains are calculated and averaged at nodes. These strains are then interpolated and differentiated for gradient calculation. We adopted a strain-gradient-hardening constitutive equation from the Taylor dislocation model, which requires the plastic strain gradient. The developed finite elements are tested numerically on the basis of typical size-effect problems such as micro-bending, micro-torsion, and micro-voids. With respect to the strain gradient plasticity, i.e., the size effects, the results obtained by using the proposed method, which are simple in their calculation, are in good agreement with the experimental results cited in previously published papers.

A Study on the Restoration of a Low-Resoltuion Iris Image into a High-Resolution One Based on Multiple Multi-Layered Perceptrons (다중 다층 퍼셉트론을 이용한 저해상도 홍채 영상의 고해상도 복원 연구)

  • Shin, Kwang-Yong;Kang, Byung-Jun;Park, Kang-Ryoung;Shin, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.438-456
    • /
    • 2010
  • Iris recognition uses a unique iris pattern of user to identify person. In order to enhance the performance of iris recognition, it is reported that the diameter of iris region should be greater than 200 pixels in the captured iris image. So, the previous iris system used zoom lens camera, which can increase the size and cost of system. To overcome these problems, we propose a new method of enhancing the accuracy of iris recognition on low-resolution iris images which are captured without a zoom lens. This research is novel in the following two ways compared to previous works. First, this research is the first one to analyze the performance degradation of iris recognition according to the decrease of the image resolution by excluding other factors such as image blurring and the occlusion of eyelid and eyelash. Second, in order to restore a high-resolution iris image from single low-resolution one, we propose a new method based on multiple multi-layered perceptrons (MLPs) which are trained according to the edge direction of iris patterns. From that, the accuracy of iris recognition with the restored images was much enhanced. Experimental results showed that when the iris images down-sampled by 6% compared to the original image were restored into the high resolution ones by using the proposed method, the EER of iris recognition was reduced as much as 0.133% (1.485% - 1.352%) in comparison with that by using bi-linear interpolation

The YIQ Model of Computed Tomography Color Image Variable Block with Fractal Image Coding (전산화단층촬영 칼라영상의 YIQ모델을 가변블록 이용한 프랙탈 영상 부호화)

  • Park, Jae-Hong;Park, Cheol-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.263-270
    • /
    • 2016
  • This paper suggests techniques to enhance coding time which is a problem in traditional fractal compression and to improve fidelity of reconstructed images by determining fractal coefficient through adaptive selection of block approximation formula. First, to reduce coding time, we construct a linear list of domain blocks of which characteristics is given by their luminance and variance and then we control block searching time according to the first permissible threshold value. Next, when employing three-level block partition, if a range block of minimum partition level cannot find a domain block which has a satisfying approximation error, There applied to 24-bpp color image compression and image techniques. The result did not occur a loss in the image quality of the image when using the encoding method, such as almost to the color in the YIQ image compression rate and image quality, such as RGB images and showed good.

A Study on Three-Dimensional Image Modeling and Visualization of Three-Dimensional Medical Image (삼차원 영상 모델링 및 삼차원 의료영상의 가시화에 관한 연구)

  • Lee, Kun;Gwun, Oubong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.2
    • /
    • pp.27-34
    • /
    • 1997
  • 3-D image modeling is in high demand for automated visual inspection and non-destructive testing. It also can be useful in biomedical research, medical therapy, surgery planning, and simulation of critical surgery (i.e. cranio-facial). Image processing and image analysis are used to enhance and classify medical volumetric data. Analyzing medical volumetric data is very difficult In this paper, we propose a new image modeling method based on tetrahedrization to improve the visualization of three-dimensional medical volumetric data. In this method, the trivariate piecewise linear interpolation is applied through the constructed tetrahedral domain. Also, visualization methods including iso-surface, color contouring, and slicing are discussed. This method can be useful to the correct and speedy analysis of medical volumetric data, because it doesn't have the ambiguity problem of Marching Cubes algorithm and achieves the data reduction. We expect to compensate the degradation of an accuracy by using an adaptive sub-division of tetrahedrization based on least squares fitting.

  • PDF

Human-Content Interface : A Friction-Based Interface Model for Efficient Interaction with Android App and Web-Based Contents

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.55-62
    • /
    • 2021
  • In this paper, we propose a human-content interface that allows users to quickly and efficiently search data through friction-based scrolling with ROI(Regions of interests). Our approach, conceived from the behavior of finding information or content of interest to users, efficiently calculates ROI for a given content. Based on the kernel developed by conceiving from GMM(Gaussian mixture model), information is searched by moving the screen smoothly and quickly to the location of the information of interest to the user. In this paper, linear interpolation is applied to make one softer inertia, and this is applied to scrolls. As a result, unlike the existing approach in which information is searched according to the user's input, our method can more easily and intuitively find information or content that the user is interested in through friction-based scrolling. For this reason, the user can save search time.