• Title/Summary/Keyword: 선형변위

Search Result 897, Processing Time 0.026 seconds

Comparison of Performance of Restrainers of Steel Cables and Shape Memory Alloy Bars for Multiple-Span-Simply-Supported Bridges (다경간 단순지지 교량의 강케이블 및 형상기억합금 변위제어장치의 성능 비교)

  • Choi, Eun Soo;Kim, Lee Hyeon;Park, Joo Nam;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.587-597
    • /
    • 2007
  • Steel restrainer cables for multiple frame bridges in California in the United States have been shown to be effective in preventing unseating at internal hinges during the past several earthquakes. Consequently, the steel-cable-restrainer is being tested for applications on multiple-span-simply-supported (MSSS) bridges in the mid-American region. In addition, shape memory alloy (SMA) bars in tension are being studied for the same application, multiple frame bridges, the developed seismic forces are transferred to piers through the restrainers. However, in MSSS bridges, the seismic forces are transferred to abutments by the restrainers. Therefore, the abutment' behavior should also be investigated. In this study, we assessed the seismic performance of the three types of restrainers, such as steel restrainer cables, SMA in tension, and SMA in bending for an MSSS bridge from moderate to strong ground motion, bending test of an SMA bar was conducted and its analytical model was determined for this study. Nonlinear time history analyses were conducted to assess the seismic responses of the as-built and the retrofitted bridges. All three types of restrainers reduced the hinge opening and the SMA in tension was the most effective of the three devices in preventing the unseating, all restrainers produced damage on the abutment from the pulling action of the MSSS bridge due to strong ground motions, was found that the retrofit of the abutment in the pulling action is required in the installation of restrainers in MSSS bridges.

Bending Moment Calculation Method and Optimum Element Size for Finite Element Analysis with Continuum Elements (연속체 요소를 사용한 유한요소해석의 휨 모멘트 계산 방법 및 최적의 요소 크기)

  • Heo, Ji-Hye;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • When designing a reinforced concrete member using nonlinear finite element analysis results, the bending moment at the critical section should be calculated. In this paper, a bending moment calculation method using the results of reinforced concrete finite element analysis(FEA) using continuum elements is presented and the optimum element size according to the order of the displacement function of the finite element is proposed. The bending moments calculated by integrating the stresses from the FEA are compared with the bending moments calculated using the static equilibrium conditions. In the method of integrating the stress, both the stress due to the reinforcing bar and the stress of the concrete are considered. In addition, various factors affecting the accuracy of the stresses calculated by the FEA were analyzed and the influence of the displacement function and the element size was verified. If the purpose of the analysis is to roughly observe the behavior of the members, it is appropriate to use the first order displacement function and the element size should be about 25% of the section height of the analytical model. When the bending moment of a member with high accuracy is required, it is suggested that the secondary displacement function be used and the element size be 12.5%.

Dynamic Characteristics of Railway Structures under High-Speed Train Loading (고속열차 주행 시 동적하중을 받는 철도구조물의 진동 특성)

  • Rhee, Inkyu;Kim, Jae Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.121-128
    • /
    • 2020
  • The purpose of this study is to investigate the distribution patterns of displacement and acceleration fields in a nonlinear soil ground based on the interaction of high-speed train, wheel, rail, and ground. For this purpose, a high-speed train in motion was modeled as the actual wheel, and the vertical contact of wheel and rail and the lateral contact, caused by meandering motion, were simulated; this simulation was based on the moving mass analysis. The soil ground part was given the nonlinear behavior of the upper ground part by using the modified the Drucker-Prager model, and the changes in displacement and acceleration were compared with the behavior of the elastic and inelastic grounds. Using this analysis, the displacement and acceleration ranges close to the actual ground behavior were addressed. Additionally, the von-Mises stress and equivalent plastic strain at the ground were examined. Further, the equivalent plastic and total volumetric strains at each failure surface were examined. The variation in stresses, such as vertical stress, transverse pressure, and longitudinal restraint pressure of wheel-rail contact, with the time history was investigated using moving mass. In the case of nonlinear ground model, the displacement difference obtained based on the train travel is not large when compared to that of the elastic ground model, while the acceleration is caused to generate a large decrease.

Inelastic Nonlinear Analysis of Plane Truss Structures Using Arc-Length Method (호장법을 이용한 평면 트러스 구조의 비탄성 비선형 해석)

  • Kim, Kwang-Joong;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane forte by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. the spatial structure should be analyzed by nonlinear analysis regardless static and dynamic analysis because it accompanys large deflection for member. To analyze the spatial structure geometrical and material nonlinearity should be considered in the analysis. In this paper, a geometrically nonlinear finite element model for plane truss structures is developed, and material nonlinearity is also included in the analysis. Arc-length method is used to solve the nonlinear finite element model. It is found that the present analysis predicts accurate nonlinear behavior of plane truss.

  • PDF

Practical Determination Method of Initial Cable Forces in Cable-Stayed Bridges (사장교 시스템의 실용적인 초기형상 결정법)

  • Song, Yo-Han;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.87-95
    • /
    • 2011
  • A rational method for determination of initial cable forces in cable-stayed bridges without complicated nonlinear analysis is presented. Initial shape analysis for cable-stayed bridges should be able to find optimizated initial cable forces and unstrained length that minimize deflection and vending moments of the deck and pylon. A presented method utilizing the idea of force equilibrium organizes initial shape analysis for each types of cable-stayed bridges. The results of that analysis were compared to several existing methods for 2D numerical examples. And for 3D actual bridges, the improved TCUD method was performed to demonstrate the accuracy of this study.

Dynamic Buckling Characteristics of Arch Structures by Sinusoidal Harmonic Excitation (정현형 조화하중에 의한 아치 구조물의 동적 좌굴 특성에 관한 연구)

  • 윤태영;김승덕
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.67-74
    • /
    • 2004
  • The dynamic instability for snapping phenomena has been studied by many researchers. Few paper deal with the dynamic buckling under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against STEP excitation. We investigate the fundamental mechanisms of the dynamic instability when the sinusoidal shaped arch structures are subjected to sinusoidal harmonic excitation with pin-ends. By using Newmark- β method, we can get the nonlinear displacement response, and using this analyze characteristics of the dynamic instability through the running response spectrum by FFT(Fast Fourier Transform).

Initial Shape Analysis of Suspension Bridge System under Dead Load (고정하중을 받는 현수교 시스템의 초기형상 결정법)

  • Kim, Min;Kim, Moon-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.511-521
    • /
    • 2010
  • This paper presents a simplified analysis method of determining the initial shape of suspension bridges, including the horizontal tension force of the main cable and the locations of each hanging point, considering the force equilibrium condition of each hanging point. This method is effective because it requires less effort than the methods used in other studies, for which complicated non-linear analysis was used, to comparatively determine the exact initial shape. The accuracy and validity of the present method are demonstrated by comparing the results of this study with those of previous researchers' numerical examples, including 2D and 3D models.

A Method Using Linear Matrix Algebra for Determination of Engine Motion in Automobile (자동차 엔진의 운동변위 결정을 위한 선형행렬연산법)

  • Ko, B.G.;Lee, W.I.;Park, G.J.;Ha, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.116-127
    • /
    • 1994
  • A method using the linear matrix algebra is developed in order to determine unknown external forces in linear structural analyses. The method defines a matrix which represents the linearity of the vibrational analysis for a structural system. The unknown external forces are determined by the operations of the matrix. The method is applied to find an engine motion in an automobile system. For a simulation process, an exhaust system is modeled and analyzed by the finite element method. The validity of the simulation is verified by comparing with the experimental results the free vibration. Also, an experiment on the forced vibration is performed to determine the damping ratio of the exhaust sysetm. Estimated model parameters(natural frequency, mode shape) are in accord with the experimental results. Because the method merely repeats the transpose and inverse operations of a matrix, the solution is extremely easy and simple. Moreover, it is more accurate than the existing methods in that there is no artificial assumptions in the calculation processes. Therefore, the method is found to be reliable for the analysis of the exhaust system considering the characteristics of vibrations. Although the suggested method is tested by only the exhaust system here, it can be applied to general structures.

  • PDF

Analysis of Bridges behavior Considering Pile rigidity and Soil characteristics (말뚝강성과 지반특성을 고려한 교량의 거동해석)

  • An, Zu-Og;Yoon, Young-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.3 s.3
    • /
    • pp.103-110
    • /
    • 2001
  • The objective of this study is to investigate the behavior of superstructure considering several factors such as change of pile rigidity, soil characteristics, and the constraint condition of support. The results of this study are as follows: 1. Pile-rigidity computed by the rotating deformed plane method is continuously varied up to approximately 5D(D=diameter of pile) below the ground level. This result is consistent with the previous study$^{(12)}$, in which the pile deformation occurs at approximately $3{\sim}6$ times of pile diameter from the ground level. 2. For bridge structure-pile system, analytical results of internal forces and deformations show different values for modified pile rigidity and unchanged pile rigidity. 3. Detaild analysis considering modified pile rigidity is required for the long-span bridge design with structure pile system.

  • PDF