• Title/Summary/Keyword: 선택적 리튬 침출

Search Result 14, Processing Time 0.014 seconds

Leaching of Cobalt and Nickel from Metallic Mixtures by Inorganic and Organic Acid Solutions (코발트와 니켈 금속혼합물로부터 무기산 및 유기산에 의한 침출)

  • Moon, Hyun Seung;Song, Si Jeong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.53-60
    • /
    • 2021
  • Leaching experiments from single metal and metallic mixtures were conducted to develop a process for the recovery of cobalt, copper, and nickel in spent lithium ion batteries. Inorganic and organic acid solutions without oxidizing agents were employed. No copper was dissolved in the absence of an oxidizing agent in the leaching solutions. The leaching condition to completely dissolve single metal of cobalt and nickel was determined based on acid concentration, reaction temperature and time, and pulp density. The leaching condition to dissolve all of cobalt and nickel from the metallic mixtures was also obtained. Leaching of the metallic mixture with methanesulfonic acid led to selective dissolution of cobalt at low temperatures.

Recovery of Pure Ni(II) Compound by Precipitation from Hydrochloric Acid Solution Containing Si(IV) (규소(IV)가 함유된 염산용액으로부터 침전법에 의한 고순도 니켈(II)화합물의 회수)

  • Moon, Hyun Seung;Song, Si Jeong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.36-42
    • /
    • 2021
  • Spent lithium-ion batteries are treated by reduction-smelting at high temperatures to recover valuable metals. Solvent extraction and precipitation of the HCl leaching solution of reduction-smelted metallic alloys resulted in a filtrate containing Ni(II) and a small amount of Si(IV). Adsorption and precipitation experiments were conducted to recover pure Ni(II) compounds from the filtrate. Si(IV) was selectively loaded onto polyacrylamide, but this method did not efficiently filter the solution due to an increase in viscosity. The addition of Na2CO3 as a precipitant to the filtrate led to the simultaneous precipitation of Ni(II) and Si(IV). However, it was possible to recover nickel oxalate with a purity higher than 99.99% by selectively precipitating Ni(II) with the addition of Na2C2O4 as a precipitant.

Separation of Ni(II), Co(II), Mn(II), and Si(IV) from Synthetic Sulfate and Chloride Solutions by Ion Exchange (황산과 염산 합성용액에서 이온교환에 의한 니켈(II), 코발트(II), 망간(II) 및 실리케이트(IV)의 분리)

  • Nguyen, Thi Thu Huong;Wen, Jiangxian;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.73-80
    • /
    • 2022
  • Reduction smelting of spent lithium-ion batteries at high temperature produces metallic alloys. Following solvent extraction of the leaching solutions of these metallic alloys with either sulfuric or hydrochloric acid, the raffinate is found to contain Ni(II), Co(II), Mn(II), and Si(IV). In this study, two cationic exchange resins (Diphonix and P204) were employed to investigate the loading behavior of these ions from synthetic sulfate and chloride solutions. Experimental results showed that Ni(II), Co(II), and Mn(II) could be selectively loaded onto the Diphonix resin from a sulfate solution of pH 3.0. With a chloride solution of pH 6.0, Mn(II) was selectively loaded onto the P204 resin, leaving Ni(II) and Si(IV) in the effluent. Elution experiments with H2SO4 and/or HCl resulted in the complete recovery of metal ions from the loaded resin.

Recovery of Co and Ni from Strong Acidic Solution by Cyanex 301 (강산성용액에서 Cyanex 301에 의한 Co 및 Ni 회수 연구)

  • Cho, Yeon-Chul;Kim, Ki-Hun;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.28-35
    • /
    • 2021
  • An experiment was conducted to separate or recover Co and Ni using Cyanex 301 from process by-products and waste resources containing Co and Ni. To separate and recover Co and Ni from simulated leaching solutions, 10 v/v% Cyanex 301 was used as an extractant in this study; Li was not extracted. At equilibrium pH 1.5 and a phase ratio (A/O) of 1.0, 0.44% of Mg and 11.57% of Mn were extracted, and more than 99% of Co and Ni were extracted. McCabe-Thiele diagram analysis confirmed that more than 99.9% of Co and Ni could be extracted simultaneously through two-stage extraction with an extraction phase ratio (A/O) of 2. It was possible to extract Mg and Mn simultaneously through the scrubbing process. In the scrubbing process, more than 99% of Mg and 87% of Mn were scrubbed using 0.05 M of H2SO4, and 99.9% of Mg and more than 80% of Mn were scrubbed using 0.05 M of HCl. In the stripping process, 93% of Co and 5% of Ni were stripped selectively by 3.0 M of H2SO4. However, when 8.0 M of HCl was used as a stripping solution, more than 99.9% of Co and more than 90% of Ni were stripped simultaneously.