DOI QR코드

DOI QR Code

Leaching of Cobalt and Nickel from Metallic Mixtures by Inorganic and Organic Acid Solutions

코발트와 니켈 금속혼합물로부터 무기산 및 유기산에 의한 침출

  • Moon, Hyun Seung (Department of Advanced Material Science & Engineering, Institute of Rare metal, Mokpo National University) ;
  • Song, Si Jeong (Department of Advanced Material Science & Engineering, Institute of Rare metal, Mokpo National University) ;
  • Tran, Thanh Tuan (Department of Advanced Material Science & Engineering, Institute of Rare metal, Mokpo National University) ;
  • Lee, Man Seung (Department of Advanced Material Science & Engineering, Institute of Rare metal, Mokpo National University)
  • 문현승 (목포대학교 공과대학 신소재공학과) ;
  • 송시정 (목포대학교 공과대학 신소재공학과) ;
  • ;
  • 이만승 (목포대학교 공과대학 신소재공학과)
  • Received : 2021.03.10
  • Accepted : 2021.04.08
  • Published : 2021.04.30

Abstract

Leaching experiments from single metal and metallic mixtures were conducted to develop a process for the recovery of cobalt, copper, and nickel in spent lithium ion batteries. Inorganic and organic acid solutions without oxidizing agents were employed. No copper was dissolved in the absence of an oxidizing agent in the leaching solutions. The leaching condition to completely dissolve single metal of cobalt and nickel was determined based on acid concentration, reaction temperature and time, and pulp density. The leaching condition to dissolve all of cobalt and nickel from the metallic mixtures was also obtained. Leaching of the metallic mixture with methanesulfonic acid led to selective dissolution of cobalt at low temperatures.

폐리튬이온배터리에 함유된 코발트, 니켈 및 구리를 회수하기 위한 공정 개발의 일환으로 단일금속과 금속혼합물의 침출을 조사했다. 이를 위해 산화제를 첨가하지 않은 무기산과 유기산을 침출제로 사용했다. 본 논문의 실험조건에서 산화제가 없는 무기산과 유기산에서 구리는 전혀 침출되지 않았다. 염산과 황산용액에서 산의 농도, 반응온도, 반응시간 및 광액농도를 변화시켜 단일 금속를 모두 용해시킬 수 있는 조건을 구했다. 또한 염산과 황산용액에서 금속혼합물로부터 니켈과 코발트를 99% 이상 침출시킬 수 있는 조건을 조사했다. 메탄술폰산으로 코발트와 니켈 금속혼합물을 침출시 낮은 반응온도에서 코발트가 선택적으로 침출됐다.

Keywords

References

  1. Vetter, J., Novak, P., Wagner, M. R., et al., 2005 : Ageing mechanisms in lithium-ion batteries, Journal of Power Sources, 147(1-2), pp.269-281. https://doi.org/10.1016/j.jpowsour.2005.01.006
  2. Li, L., Dunn, J. B., Zhang. X. X., et al., 2013 : Recovery of Metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment, Journal of Power Sources, 233, pp.180-189. https://doi.org/10.1016/j.jpowsour.2012.12.089
  3. Li, L., Qu. W., Zhang. X., et al., 2015 : Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries, Journal of Power Sources, 282, pp.544-551. https://doi.org/10.1016/j.jpowsour.2015.02.073
  4. Ma. X., Ma, Y., Zhou. J., et al., 2018 : The Recycling of Spent Power Battery: Economic Benefits and Policy Suggestions, Earth and Environmental Science, 159, 012017.
  5. Lupi, C., Pasquali, M., 2003 : Electrolytic nickel recovery from lithium-ion batteries , Minerals Engineering, 16(6), pp.537-542. https://doi.org/10.1016/S0892-6875(03)00080-3
  6. Liu, C., Lin, J., Cao,H., et al., 2019 : Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review, Journal of Cleaner Production, 228, pp.801-813. https://doi.org/10.1016/j.jclepro.2019.04.304
  7. Gaines, L., 2014 : The future of automotive lithium-ion battery recycling: Charting a sustainable course., Sustainable Materials and Technologies, 1-2, pp.2-7. https://doi.org/10.1016/j.susmat.2014.10.001
  8. Ordonez, J., Gago, E. J., Girard, A., 2016 : Processes and technologies for the recycling and recovery of spent lithium-ion batteries, Renewable and Sustainable Energy Reviews, 60, pp.195-205. https://doi.org/10.1016/j.rser.2015.12.363
  9. Georgi-Maschler, T., Friedrich, B., Weyhe, R., et al., 2012 : Development of a recycling process for Li-ion batteries, Journal of Power Sources, 207, pp.173-182. https://doi.org/10.1016/j.jpowsour.2012.01.152
  10. Hageluken, C., 2006 : Recycling of Electronic Scrap at Umicore's Integrated Metals Smelter and Refinery, World of Metallurgy - Erzmetall, 59, pp.154-161.
  11. Mohammad, A. H. S., Kumy, A., 2013 : Hydrometallurgical Recovery of Value Metals from Spent Lithium Ion Batteries, American Journal of Materials Engineering and Technology, 1(1), pp.8-12.
  12. Silva, R. A., Zhang, Y., Hawboldt, K., et al., 2019 : Study on Iron-nickel Separation Using Ion Exchange Resins with Different Functional Groups for Potential Iron Sub-production, Mineral Processing and Extractive Metallurgy Review, 42, pp.1-15.
  13. Zhang, P., Yokoyama, T., Itabashi, O., et al., 1998 : Hydrometallurgical process for recovery of metal balues from spent lithium-ion secondary batteries, Hydrometallurgy, 47(2-3), pp.259-271. https://doi.org/10.1016/S0304-386X(97)00050-9
  14. Li, J., Yang, X., Fu, Y., et al., 2019 : Recovery of Fe, Mn, Ni and Co in sulfuric acid leaching liquor of spent lithium ion batteries for synthesis of lithium ion-sieve and NixCoyMn1-xy(OH)2, Hydrometallurgy, 190, 105190. https://doi.org/10.1016/j.hydromet.2019.105190
  15. Lee, C. K., Rhee, K. I., 2003 : Reductive leaching of cathodic active materials from lithium ion battery wastes, Hydrometallurgy, 68(1-3), pp.5-10. https://doi.org/10.1016/S0304-386X(02)00167-6
  16. Chen, L., Tang, X., Zhang, Y., et al., 2011 : Process for the recovery of cobalt oxalate from spent lithium-ion batteries, Hydrometallurgy, 108(1-2), pp.80-86. https://doi.org/10.1016/j.hydromet.2011.02.010
  17. Rybka, P., Regel-Rosocka, M., 2012 : Nickel and Cobalt Extraction from Chloride Solutions with Quaternary Phosphonium Salts, Separation Science and Technology, 47(9), pp.1296-1302. https://doi.org/10.1080/01496395.2012.672532
  18. Jemesr, P. G., 1978 : Hydrolysis of esters of oxy acids: pKa values for strong acids; Brflnsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20 pK units, Canadian Journal of Chemistry, 56(17), pp.2342-2354 https://doi.org/10.1139/v78-385
  19. Mookherjee, S., Gadkari, A. A., Deo, D. M., et al., 1992 : Pyrometallurgical Preconcentration Technique for the Recovery of Copper, Nickel and Cobalt from Copper Converter Slag, Mineral Processing and Extractive Metallurgy Review, 9(1-4), pp.213-222. https://doi.org/10.1080/08827509208952706
  20. Tran, T. T., Moon, H. S., Lee, M. S., 2020 : Separation of Cobalt, Nickel, and Copper from Synthetic Metallic Alloy by Selective Dissolution with Acid Solutions Containing Oxidizing Agent, Mineral Processing and Extractive Metallurgy Review, pp.1-13.
  21. Adolf, P., 1975 : The Kinetics of Nickel Passivation, Electrochem. Soc.: Electrochemical science Lectrochemical Science And Technology, 122(1), pp.80-82. https://doi.org/10.1149/1.2134165
  22. Kolotyrkin, Y. M., Florianovich, G. M., Goryachkin, V. A., et al., 1976 : Role of Oxidizers In The Active Dissoution And Passivation Of Metals, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 69(3), pp.407-414. https://doi.org/10.1016/S0022-0728(76)80141-6