• Title/Summary/Keyword: 선택적환원

Search Result 425, Processing Time 0.021 seconds

Magnetic Properties of Electroless Co-Mn-P Alloy Deposits (무전해 Co-Mn-P 합금 도금층의 자기적 특성)

  • Yun, Seong-Ryeol;Han, Seung-Hui;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.274-281
    • /
    • 1999
  • Usually sputtering and electroless plating methods were used for manufacturing metal-alloy thin film magnetic memory devices. Since electroless plating method has many merits in mass production and product variety com­pared to sputtering method, many researches about electroless plating have been performed in the United State of America and Japan. However, electroless plating method has not been studied frequently in Korea. In these respects the purpose of this research is manufacturing Co-Mn-P alloy thin film on the corning glass 2948 by electroless plating method using sodium hypophosphite as a reductant, and analyzing deposition rate, alloy composition, microstructure, and magnetic characteristics at various pH's and temperatures. For Co-P alloy thin film, the reductive deposition reaction 0$\alpha$urred only in basic condition, not in acidic condition. The deposition rate increased as the pH and temperature increased, and the optimum condition was found at the pH of 10 and the temperature of $80^{\circ}C$. Also magnetic charac­teristics was found to be most excellent at the pH of 9 and the temperature of $70^{\circ}C$, resulting in the coercive force of 8700e and the squareness of 0.78. At this condition, the contents of P was 2.54% and the thickness of the film was $0.216\mu\textrm{m}$. For crystal orientation, we could not observe fcc for $\beta$-Co. On the other hand,(1010), (0002), (1011) orientation of hcp for a-Co was observed. We could confirm the formation of longitudinal magnetization from dominant (1010) and (1011) orientation of Co-P alloy. For Co-Mn-P alloy deposition, coercive force was about 1000e more than that of Co P alloy, but squareness had no difference. For crystal orientation, (l01O) and (lOll) orientation of $\alpha$-Co was dominant as same as that of Co- P alloy. Likewise we could confirm the formation of longitudinal magnetization.

  • PDF

Effects of La Addition and Preparation Methods on Catalytic Activities for Methane Partial Oxidation Catalysts (메탄 부분산화반응 촉매에 La 첨가 및 제조방법에 따른 촉매활성에 미치는 영향)

  • Cheon, Han-Jin;Shin, Ki-Seok;Ahn, Sung-Hwan;Yoon, Cheol-Hun;Hahm, Hyun-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.7-14
    • /
    • 2010
  • Synthesis gas was produced by the partial oxidation of methane. For the preparation of catalysts, Ni, known to be active in this reaction and cheap, was used as the active component and $CeO_2$, having high oxygen storage capability and high redox ability, was used as the support. The catalysts were prepared by the impregnation and urea methods. The catalyst prepared by the urea method showed about 11 times higher surface area and finer particle size than that prepared by the impregnation method. The catalysts prepared by the urea method showed higher methane conversion and synthesis gas selectivity than that prepared by the impregnation method. In this reaction, carbon deposition is a problem to be solved, so La was added to the catalyst system to reduce the carbon deposition. TGA analysis results showed that there was 2% carbon deposition with La-added catalysts and 16% with La-free catalysts. It was found that the addition of La decreases the amount of carbon deposition and prevents catalyst deactivation.

Separation and Sensitive Determination of Sb Species using Yeast Bonded Bio-column with Continuous Hydride Generation (이이스트 고정 bio칼럼을 이용한 Sb의 화학종분리 및 연속적 수소화물발생법에 의한 감도개선)

  • Lee, Jeong-Ok;Kwon, Hyo-Shik;Pak, Yong-Nam
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.696-700
    • /
    • 2010
  • Yeast is immobilized upon $100{\mu}m$ CPG(controlled pore glass bead) to separate $Sb^{3+}$ and $Sb^{5+}$. Continuous hydride generation is performed after the bio-column. The optimum conditions are 0.8 M nitric acid as an eluent with the flow rate of 1.0 mL $min^{-1}$ and the optimum conditions for the generation of hydride are 2 M HCl, 3% (w/v) $NaBH_4$ with the flow rate of 0.83 mL $min^{-1}$, Ar carrier gas flow rate of 50 mL $min^{-1}$. Two species are separated at 112 and 354 seconds each. The sensitivity is enhanced by 10 times for $200{\mu}L$ of sample and the detection limits are 3.0 ppb and 7.0 ppb for $Sb^{3+}$ and $Sb^{5+}$, respectively. When compared with the standard samples, this method showed accurate results.

Numerical Study on the Baffle Structure for Determining the Flow Characteristic in Small Scale SCR System (소형 SCR 시스템 내 유동 제어를 위한 Baffle의 구조 결정에 관한 수치해석적 연구)

  • Park, Mi-Jung;Chang, Hyuk-Sang;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.862-869
    • /
    • 2010
  • Numerical analysis was done to evaluate the gas flow distribution in small scale SCR system which has $2.4{\times}2.4{\times}3.1\;m^3$ in volume and 25,300 Sm3/hr in flue gas flow capacity. Various types of baffles proposed for controlling the flow uniformity were evaluated by the CFD analysis to find the optimal geometry of the baffle in the SCR system. By installing baffles in the SCR system, the RMS (%) value was raised up to 6.2% compared with the baffle-uninstalled state. The effect of baffle thicknesses on the RMS (%) value was not shown within 0 and 8 mm in thickness, but the RMS (%) value was raised by 2.5% in 10 mm of baffles thickness, which causes the unstability in flow. By comparison between the shape of baffles, it is known that the lattice type baffle has better performance in controlling the flow uniformity than the circular truncated cone type baffle or mixer type baffle. RMS (%) values have more that 10% difference according to the shape of baffle type.

Enhanced Antioxidative Potential by Silymarin Treatment through the Inductionof Nrf2/MAPK Mediated HO-1 Signaling Pathway in RAW 264.7 Cells (RAW 264.7 세포에서 Nrf2/MAPK 의 활성을 통한 HO-1 과발현에 의한 silymarin의 항산화 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.776-782
    • /
    • 2023
  • Silymarin, which is derived from dried Silybum marianum (milk thistle) seeds and fruits, possesses various beneficial properties, such as hepatoprotective, antioxidative, anti-inflammatory, and anticancer activity. This research aimed to explore the antioxidative activity of silymarin against oxidative stress and understand its molecular mechanism in RAW 264.7 cells. The study employed cell viability and reactive oxygen species (ROS) formation assays and western blot analysis. The results demonstrated that silymarin effectively reduced intracellular ROS levels induced by lipopolysaccharide (LPS) in a dose-dependent manner without causing any cytotoxic effects. Moreover, silymarin treatment significantly upregulated the expression of heme oxygenase (HO)-1, a phase II enzyme known for its potent antioxidative activity. Additionally, silymarin treatment significantly induced the expression of nuclear factor-erythroid 2 p45-related factor (Nrf) 2, a transcription factor responsible for regulating antioxidative enzymes, which was consistent with the upregulated HO-1 expression. To investigate the involvement of key signaling pathways in maintaining cellular redox homeostasis against oxidative stress, the phosphorylation status of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) was estimated by western blot analysis. The results showed that silymarin potently induced HO-1 expression, which was mediated by the phosphorylation of p38 MAPK. To further validate the antioxidative potential of silymarin-induced HO-1 expression, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was employed and attenuated by silymarin treatment, as identified by a selective inhibitor for each signaling molecule. In conclusion, silymarin robustly enhanced antioxidative activity by inducing HO-1 via the Nrf2/p38 MAPK signaling pathway in RAW 264.7 cells.

Quality Characteristics of Sweet-pumpkin Paste with Different Thermal Condition and Sweet-Pumpkin Latte with Various Gums (가열 조건을 달리한 단호박 페이스트와 검 종류별 단호박 라떼의 품질특성)

  • Park, Bo-ram;Kim, Na-Jung;Yoo, Seon-Mi;Han, Gwi Jung;Kim, Ha Yoon;Han, Hye-min;Shin, Dong-Sun;Shin, Malshick
    • Korean journal of food and cookery science
    • /
    • v.31 no.3
    • /
    • pp.304-317
    • /
    • 2015
  • For the production of pumpkin paste with respect to heating conditions, we steamed the pumpkin for roughly 15 min, heated it with high pressure treatment for 0 min (A), 10 min (B), 20 min (C), 40 min (D), and subsequently investigated the quality characteristics. Generally a significant difference was observed between the pumpkin paste treated with and without high-pressure heat. The values of water content, crude protein and crude fiber of the high-pressure heat-treated groups B, C, D were decreased compared with untreated group A. The soluble fiber in experimental group B sweet-pumpkin paste treated with high-pressure heat for 20 min was higher than the control, and the highest value at 2.02. Experimental group D sweet-pumpkin paste treated with high-pressure heat for 40 min was found to have a decreased soluble fiber content relative to the control. The L value for the color of the group A untreated control sweet-pumpkin paste (no high-pressure heating) decreased as the time increased from 10 min to 40 min, with L values of 50.33, 49.46, and 48.06, respectively. The b value for the color of the sweet-pumpkin paste also decreased, showing a significant difference. Taking into account all the results, we chose experimental group B in order to prepare sweet-pumpkin latte. We used 0.2% gum (xanthan gum, locust bean gum, guar gum) as a stabilizer. Sweet-pumpkin latte with xanthan and locust bean gum has a suspension stability effect that lasts 90 min. The L and b values of sweet-pumpkin latte with gums increase and a value decrease compared with the control. In terms of the overall acceptance of the sweet-pumpkin latte, the experimental group with xanthan gum scored the best.

Characteristics on De-CH4/NOx according to Ceramic and Metal Substrates of SCR Catalysts for CNG Buses (CNG 버스용 SCR 촉매의 세라믹과 메탈 담체에 따른 De-CH4/NOx 특성)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for about 95% of the automobiles in use. Also, in order to meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is gradually increasing. Natural gas is a clean fuel that emits few air pollutants and has been used mainly as a fuel for city buses. In the long term, we intend to develop a new NGOC/LNT+NGCO/SCR combined system that simultaneously reduces the toxic gases, $CH_4$ and NOx, emitted from CNG buses. The objective of this study is to investigate the characteristics of $de-CH_4/NOx$ according to the ceramic and metal substrates of the SCR (Selective Catalytic Reduction) catalysts mounted downstream of the combined system. The V and Cu-SCR catalysts did not affect the $CH_4$ oxidation reaction, the two NGOC/SCR catalysts each coated with two layers began to oxidize $CH_4$ at $400^{\circ}C$, and the amount of $CH_4$ emitted was reduced to about 20% of its initial value at about $550^{\circ}C$. The two NGOC/SCR catalysts each coated with two layers showed a negative (-) NOx conversion rate above $350^{\circ}C$. The ceramic-based combined system reached LOT50 at $500^{\circ}C$, which was about 20% higher in terms of the $CH_4$ conversion rate than the metal-based combined system, showing that the combined system of NGOC/LNT+Cu-SCR is a suitable combination.

Electrochemical Propertics and Oxidation Reaction of Hydrazobenzene by Oxygen Adducted Tetradentate Schiff Base Cobalt(II)(3MeOSED) Activated Catalyst in Aprotic Solvents(I) (비수용매에서 산소첨가된 네자리 Schiff Base Cobalt(II)(3MeOSED) 활성촉매에 의한 Hydrazobenzene의 산화반응과 전기화학적 성질 (제 1 보))

  • Ki-Hyung Chjo;Yong-Kook Choi;Sang-Bock Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.261-272
    • /
    • 1992
  • Tetradentate Schiff base Cobalt(II)(3MeOSED)$(H_2O)_2$ complexe was synthesized and allowed to react with dry oxygen to form oxygen adducts of Cobalt(III) complexes such as ${\mu}$-peroxo type [Co(III)(3MeOSED)(DMF)]$_2O_2$ and [Co(III)(3MeOSED)(DMSO)]$_2O_2$in DMF and DMSO or superoxo type [Co(III)(3MeOSED)(Py)]$O_2$ in pyridine. The oxygen adducted complex was investigated by cyclic voltammetry and DPP method with glassy carbon electrode in 0.1M TEAP-DMF (-DMSO,-Py) as supporting electrolyte solution. As a result the reduction reaction process occurred to four steps including prewave Of $O_2^-$in 1 : 1 oxygen adducted superoxo type [Co(III)(3MeOSED)(Py)]$O_2$complex and three steps not including prewave of $O_2^-$ in 1 : 2 oxygen adducted ${\mu}$-peroxo type [Co(III)-(3MeOSED)(DMF)]$_2O_2$ and [Co(III)(3MeOSED)(DMSO)]$_2O_2$. A superoxo type [Co(III)(3MeOSED)(L)]$O_2\;(L: CH_3OH)$ was generated with oxygen in methanol. Selectively oxidized hydrazobenzene $(H_2AB)$ to trans-azobenzene(t-AB) and the rate constant k for oxidation reaction of the following equation is $(2.96 {\pm} 0.2)$${\times}$ $10^{-1}$M/sec. $H_2AB$ + Co (II)(3MeOSED)$(L_2)+O_2\;{\rightleftarrow^K}$ [Co(III)(3MeOSED)(L)]$O_2{\cdot}H_2AB{\longrightarrow^K}$ Co(II(3MeOSED)$(L)_2$+t-AB+$H_2O_2 $.

  • PDF

The Numerical Study on the Flow Control of Ammonia Injection According to the Inlet NOx Distribution in the DeNOx Facilities (탈질설비 내에서 입구유동 NOx 분포에 따른 AIG유동제어의 전산해석적 연구)

  • Seo, Deok-Cheol;Kim, Min-Kyu;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.324-330
    • /
    • 2019
  • The selective catalytic reduction system is a highly effective technique for the denitrification of the flue gases emitted from the industrial facilities. The distribution of mixing ratio between ammonia and nitrogen oxide at the inlet of the catalyst layers is important to the efficiency of the de-NOx process. In this study, computational analysis tools have been applied to improve the uniformity of NH3/NO molar ratio by controlling the flow rate of the ammonia injection nozzles according to the distribution pattern of the nitrogen oxide in the inlet flue gas. The root mean square of NH3/NO molar ratio was chosen as the optimization parameter while the design of experiment was used as the base of the optimization algorithm. As the inlet conditions, four (4) types of flow pattern were simulated; i.e. uniform, parabolic, upper-skewed, and random. The flow rate of the eight nozzles installed in the ammonia injection grid was adjusted to the inlet conditions. In order to solve the two-dimensional, steady, incompressible, and viscous flow fields, the commercial software ANSYS-FLUENT was used with the k-𝜖 turbulence model. The results showed that the improvement of the uniformity ranged between 9.58% and 80.0% according to the inlet flow pattern of the flue gas.

An Experimental Study on the NH3-SCR of NOx over a Vanadium-based Catlayst (바나듐 계열 촉매를 통한 NOx의 NH3-SCR에 관한 실험적 연구)

  • Jeong, Hee-Chan;Sim, Sung-Min;Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2012
  • The $NH_3$-SCR characteristics of $NO_X$ over a V-based catalyst are experimentally examined over a wide range of operating conditions, i.e., $170-590^{\circ}C$ and $30,000-50,000h^{-1}$, with a simulated diesel exhaust containing $NH_3$, NO, $NO_2$, $O_2$, $H_2O$, and $N_2$. The influences of the space velocity and oxygen concentration on the standard-SCR reaction are analyzed, and it is shown that the low space velocity and high oxygen concentration promote the SCR activity by ammonia. The best $deNO_X$ efficiency is obtained with a $NO_2/NO_X$ ratio of 0.5 because of an enhanced chemical activity induced by the fast-SCR reaction, while at the $NO_2/NO_X$ ratios above 0.5 the $deNO_x$ activity decreases due to the slow-SCR reaction. The oxidation of ammonia begins to take place at about $300^{\circ}C$ and the reaction products, such as $N_2$, NO, $NO_2$, $N_2O$, and $H_2O$, are produced by the undesirable oxidation reactions of ammonia, particularly at high temperatures above $450^{\circ}C$. Also, $NO_2$ decomposes to NO and $O_2$ at temperatures above $240^{\circ}C$. Therefore, $NO_2$ decomposition and ammonia oxidation reactions deteriorate significantly the SCR catalytic activity at high temperatures.