선택율 추정은 질의 최적화를 위한 기법중의 하나이다. 이동객체에 대한 기존 선택율 추정 기법은 시간에 따른 빈번한 이동객체의 위치 변화를 요약 정보에 반영하지 못함으로써 선택 율 추정시 많은 에러를 발생시키고 있다. 따라서 이 논문에서는 이동객체의 질의에 대한 선택율 추정을 위한 색인 기반의 히스토그램 기법을 제안하였다. 또한 제안된 기법의 구현과 평가를 통 해 제안된 기법의 성능을 분석하였다. 이 논문에서 제안된 기법은 차량 추적 시스템, 위치 기반 서비스, 응급 구조 서비스, 그리고 텔레매틱스 서비스 통과 같은 연속적으로 위치를 변경하는 이동객체의 정보를 실시간으로 관리하고 검색하는 응용분야에 활용 가능할 것이다.
선택율 추정 기법들의 공통적인 목표는 데이타의 요약 정보를 적은 저장 공간에 유지하고, 추정된 값과 질의 결과에 대한 오차를 최소화하는 것이다. 방대한 양의 공간 데이타에 대한 선택율 추정의 경우, 정확한 결과를 얻기 위해서는 공간 데이타의 분포를 반영하는 요약 정보를 필요로 하며, 그러한 요약 정보를 생성하기 위해서는 많은 저장 공간을 필요로 한다. 따라서, 이 논문에서는 적은 저장 공간을 사용하면서, 정확성 높은 선택율을 추정하는 누적밀도 웨이블릿 히스토그램을 제안한다. 이 히스토그램은 기존의 누적밀도 히스토그램에 유지되는 각 서브 히스토그램에 대해 웨이블릿 변환을 적용함으로써, 보다 적은 저장 공간에서 높은 정확도의 선택율을 얻을 수 있다. 우리는 실험결과를 통하여 기존 히스토그램의 저장 공간에 $25\%\~50\%$만을 사용하여 높은 정확도의 선택율 추정 결과를 보임으로써, 기존의 다른 선택율 추정기법들이 갖는 저장공간에 대한 제약사항을 해결함과 동시에 적은 저장공간을 사용하여 높은 정확도의 선택율 추정이 가능함을 확인 하였다. 이 논문에서 제안된 기법은 공간 데이타베이스에서의 공간 범위 질의에 대한 정확성 높은 선택율을 추정하기 위해 사용될 수 있다.
공간 질의에 대한 선택율 추정은 가장 효율적인 실행 계획을 찾는데 이용되는 매우 중요한 과정이다. 공간 도메인이 큰 경우, 기존 연구의 요약정보는 상대적으로 적은 정보로 선택율을 추정하기 때문에 좋은 선택율을 유지하기 어렵다. 따라서, 이 논문에서는 작은 저장공간에 공간요약정보를 압축하는 새로운 기법인 MW 히스토그램을 제안한다. 이 히스토그램은 MinSkew 분할 알고리즘과 웨이블릿 변환이 결합되어 적은 저장공간에서도 타당한 선택율과 압축효과를 얻을 수 있고, 동적 갱신에 대해 효율적으로 대처할 수 있는 구조를 가진다. 실험 결과를 통하여, 버켓 수가 0.3M/6인 MW 히스토그램이 5%-20% 질의에서 평균적으로 좋은 성능을 보이고 있어, MW 히스토그램이 적은 저장공간에서 더 좋은 선택율을 얻을 수 있음을 확인시켜주었다.
데이터베이스 질의 최적화기는 가장 효율적인 실행계획을 구하기 위해서 질의의 선택율을 추정한다. 일반적으로 애트리뷰트들은 서로 독립적이지 않기 때문에 여러 개의 애트리뷰트를 가지는 질의에 대해서는 다차원 선택을 추정 기법이 필요하다. 대부분의 상용 데이터베이스에서는 히스토그램이 계산 오버헤드가 많지 않고 작은 에러율로 데이터 분포를 를 근사 시킬 수 있기 때문에 실용적으로 많이 사용되고 있다. 그러나 여러 개의 애트리뷰트를 가진 다차원 지?l의 경우에서는 차원이 높아 질수록 에러율을 낮추기 위해 많은 저장 공간을 필요로 하기 때문에 히스토크램 방법이 적합하지 않다. 이 논문에서는 다차원 선택을 추정을 위한 새로운 기법을 제안한다. 다차원 공간에서 크기가 작은 히스토그램 버켓을 많이 만들고 이 버켓의 정보를 DCT로 압축하여 선택을 추정에 사용함으로써 에러율을 작게 하고 저장 공간의 사용량도 줄인다. 폭 넓은 실험 결과는 본 논문에서 제시한 방법들의 타당성과 이점을 확인시켜 준다.
데이터 베이스 관리 시스템에서는 질의 결과의 크기(selectivity)를 미리 예측하는 것이 필요하다. 질의 결과의 크기는 데이터의 분포 상태에 의해서 결정된다. 이러한 데이터의 분포 상태를 정확하게 예측하는 것이 매우 중요하다. 대부분의 데이터 베이스 관리 시스템에서는 이를 위하여 주기적으로 저장하고 있는 레코드에 대해서 히스토그램을 만들고 이용한다. 이 방법은 히스토그램의 저장공간이 적게 필요로 하고 선택도를 추정하는데 있어서 선택도 추정시 부가적인 계산이 필요하지 않은 장점이 있지만, 일정한 크기의 버켓내에서는 데이터들이 균일하게 분포한다는 가정을 함으로써 선택도 추정에 있어서 에러율이 높았다. 이에 본 논문에서는 커널 방법을 사용하여 버켓 내 데이터의 분포에 대하여 추정 함으로써 이를 해결하는 방법을 제시하였다.
선택도 추정 기법은 상용 데이터베이스에서 질의 최적화를 위해 많이 사용하고 있다. 그 중 선택도 추정 기법에 가장 많이 사용되고 있는 기법은 히스토그램이다. 최근 시공간 데이터베이스 관련 연구에서 시간$\cdot$공간 데이터베이스의 선택도 추정 기법이 활발하게 이루어지고 있다. 이 히스토그램 추정 기법이 과거에서 현재시점까지 범위 질의 수행을 성공적으로 이루어지고 있지만 대량의 데이터들을 효율적으로 관리하기에는 저장오버헤드가 너무 크다. 본 논문에서는 시공간데이터베이스에서 성공적으로 선택도 추정을 다룬 히스토그램 추정 기법을 보완하여 과거 이력데이터들의 저장을 효율적으로 할 수 있는 압축기법을 제안한다. 현재 객체에 대해서는 기존 연구에서 성공적으로 이루어진 히스토그램 기반 추정 기법을 응용하고 과거 이력데이터에 대해서는 압축기법인 웨이블렛을 응용하여 선택도추정의 오류율과 저장오버헤드의 향상이 기대된다.
단순 이단계 표본 추출의 경우에 최적 선택률은 Hansen과 Hurwitz(1949)에 의하여 구하여졌다. 그러나 통계청에서 실시하는 표본조사등은 층화 이단계 추출을 한다. 따라서 실제적인 필요성에 의하여 층화 2단계 표본 설계를 시도 하였다. 층화 이단계 표본추출시에 주어진 비용아래서 모총계의 추정량의 분산을 최소로 하는 최적의 선택확률(optimum selection probability), 표본추출율과 부차 표본추출율을 Lagrangean 승수법에 의하여 구한다.
선택을 추정은 질의 최적화를 위한 기법중의 하나이다. 이동객체에 대한 기존 선택율 추정 기법은 시간에 따른 이동객체의 위치 변화를 요약 정보에 반영하지 못하며. 또한 기존 공간 요약 정보를 확장하여 이용함으로써 선택율 추정시 많은 에러를 발생시키고 있다. 기존 기법들이 이동객체의 위치 정보 변화를 요약 정보에 반영하기 위해서는 요약 정보를 자주 재생성해야 하며, 그러므로 전체 데이터베이스를 자주 스캔해야 하는 문제점을 갖고 있다. 따라서 이 논문에서는 이동객체의 현재 질의에 대한 선택을 추정 기법을 개발하기 위하여 쿼드 트리 기반의 히스토그램 기법을 제안하였다. 또한 제안된 기법의 구현과 평가를 통해 제안된 기법의 성능을 분석하였다. 이 논문에서 제안된 기법은 차량 추적 시스템, 위치 기반 서비스, 응급 구조 서비스, 그리고 텔레매틱스 서비스 등과 같은 연속적으로 위치를 변경하는 이동객체의 정보를 실시간으로 관리하고 검색하는 응용분야에 활용 가능할 것이다.
누적밀도 히스토그램은 사각형 객체의 네 점에 대응하는 4개의 서브 히스토그램을 유지함으로써 사각형 객체가 여러 버켓에 걸쳐질 경우 발생하는 다중 계산 문제를 해결하고 있다. 이 기법은 빠른 추정시간과 정확한 결과를 제공하고 있지만, 질의 윈도우가 그리드 셀의 경계와 일치해야 한다는 제약사항을 기반으로 수행하므로, 실제 응용에 적용시 많은 에러를 초래하게 된다. 따라서, 이 논문에서는 기존 누적밀도 히스토그램에서 질의 윈도우의 제약사항에 관한 영향을 줄이기 위해, 두가지 확률모델을 기반으로 일반화된 누적밀도 히스토그램을 사용한 선택율 추정 기법을 제안하였다. 제안된 두가지 확률 모델은 \circled1질의 영역 비율을 고려한 확률모델과, \circled2교차 영역 정보를 고려한 확률모델이다. 우리는 실제 데이터 셋을 사용하여 제안된 기법을 실험하였다 실험 결과는 이 논문에서 제안된 기법이 기존의 다른 선택율 추정 기법보다 성능이 뛰어남을 보여주고 있다 더구나, 교차 영역 정보를 기반으로 하는 확률모델의 경우 20% 질의 윈도우에서 5% 미만의 낮은 에러율을 보였다. 이 논문에서 제안된 기법은 사각형 객체의 공간 범위 질의의 선택율을 정확하게 추정하는데 사용될 수 있다.
최근 시간에 따른 대량의 공간 객체들의 효과적인 저장과 처리의 필요성이 요구되면서 시공간 데이타베이스에 대한 필요성이 증가하였다. 이러한 시공간 데이타베이스에서 효과적인 질의 처리를 위하여 여러 가지 질의 최적화 기법이 연구되었고 그중 질의의 근사적인 결과를 계산하는 선택도 추정 기법이 활발하게 연구되었다. 선택도 추정 기법에는 샘플링 기반 기법, 히스토그램 기반 기법, 웨이블릿 기반 기법 등이 있고 그중 히스토그램 기법은 현재 상용 데이타베이스에서 널리 사용되고 있다. 하지만 지금까지의 시공간 질의 최적화 연구는 이동 객체의 미래 위치에 대한 선택도 추정에 치중되어 왔다. 본 논문에서는 과거의 시공간 데이타의 질의 최적화를 위하여 새로운 히스토그램인 T-Minskew의 구축 방법을 제안한다. 또한 T-Minskew를 이용한 효과적인 선택도 추정 기법을 제안하고 임계치 기법을 이용한 히스토그램의 효과적인 유지 기법을 통해 잦은 히스토그램 재구축을 방지하고 작은 추정 오류율을 유지하는 방법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.