• Title/Summary/Keyword: 선택과 제거

Search Result 1,492, Processing Time 0.031 seconds

Cleaning Procedure for Stopping Residue Interference on Glassware and Equipment in Laboratory (실험기구의 재사용 강화를 위한 세척방법에 관한 소고)

  • 이용욱
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.2
    • /
    • pp.1-2
    • /
    • 1992
  • 실험기구의 청결도는 실험 및 분석에 있어서 생명과 같이 중용한 것으로 실험실에서 초자기구와 그외 기구, 그리고 장비 등을 사용하는 연구자와 실험요원들이 원하는 바는 이 기구들이 완전히 청결한 상태를 유지하는 것이다. 눈에 보이지 않는 찌꺼기들은 시료분석의 오차를 유발하고, 분리속도를 증가 또는 감소시키며, 미생물 실험에 있어서는 2차 감염이나 배양물 성장저해 그리고 신속성이 낮아지는 결과 등 많은 문제점을 초래하게 된다. 이러한 문제점을 해결하기 위하여 실험기구는 청결히 세척되어야 하며 어떠한 방해물질도 완전히 제거되어야 한다. 이는 바로 적절한 세척제를 선택하고 또한 효과적인 세척방법이 병행되어야 함을 뜻한다. 본 고에서는 세척제의 선택과 세척방법에 대하여 간략히 논해보고자 한다.

  • PDF

Implementation of the tool for filtering the results of the specific information in the mobile web browser (모바일 웹 브라우저 검색 결과의 특정 정보 차단 도구 구현)

  • Cho, choong-hee;Joo, heon-sik
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.35-36
    • /
    • 2013
  • 본 논문은 모바일 사용자들이 스마트폰(Android OS)을 통해 쇼핑몰을 접속할 때 사용자가 보기 원하지 않는 상품을 선택하여 웹 브라우저에서 보이지 않을 수 있도록 지원하는 프로그램(Application)을 제안한다. 프로그램은 웹페이지를 파싱하고 파싱된 데이터를 사용자에게 상품별로 선택할 수 있도록 제공한다. 선택된 데이터는 웹 브라우저를 통해 보여줄 때 제거하여 보여준다. 따라서 사용자는 사용자 필요에 맞게 재구성된 웹페이지를 이용할 수 있다.

  • PDF

Robust Object Contour Tracking using Boundary Edge Selection (경계선 에지 선택을 이용한 정확한 객체 칸투어 추적)

  • 김태용;박지헌;이성환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.754-756
    • /
    • 2004
  • 본 논문에서는 칸투어 추적의 정확도 향상을 위하여 배경이 제거된 에지 중에서 실제로 추적하고자 하는 객체의 경계선에 존재하는 에지들을 선택하는 방법을 제안한다 우리는 전 프레임에 존재하는 객체 칸투어의 수직 방향 그래디언트를 계산한다. 또한 다양한 크기를 가진 면적의 개념을 사용한 그래디언트 계산은 노이즈에 의한 영향이나 작은 체크무늬의 텍스쳐를 가진 장면에서도 정확하게 객체의 경계선에 존재하는 에지를 선택할 수 있게 한다. 우리는 이렇게 다양한 크기로 계산된 그래디언트값들은 가중치를 사용하여 합으로 계산하고 이 값이 큰 에지들을 경계선에 존재하는 에지로 고려한다.

  • PDF

Selective Removal of Protease from Soybean Cell Wall Degrading Enzyme Complex Isolated from Aspergillus niger CF-34 (Aspergillus niger CF-34로부터 분리한 대두세포벽분해효소 복합체 중의 Protease의 선택적인 제거)

  • Choi, Yeon-Bae;Kim, Kang-Sung;Sohn, Heon-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.370-374
    • /
    • 1995
  • By exposing the complex enzyme solution to alkaline condition, it was possible to remove the protease activity selectively without inactivation of soybean cell wall degrading activity of the crude enzyme complex produced by Aspergillus niger CF-34. Optimum reaction conditions were as follow. pH was $9.0{\pm}0.1$, temperature was $20^{\circ}C$ and reaction time was 30 min with gentle stirring. Over 90% of protease activity could be eliminated while the activities of pectinase, polygalacturonase, xylanase, carboxymethyl cellulase and soybean cell wall degrading enzyme were maintained to $80{\sim}100%$. Through alkali treatment, it was discovered that the quality and organoleptic properties of soy protein produced by this enzymes were improved because the hydrolysis of protein and formation of bitter peptide were decreased.

  • PDF

Separation of Aqueous Chlorinated Hydrocarbons by Pervaporation (투과증발법을 이용한 염소계 화합물 수용액의 분리)

  • 이영무;유승민;오부근
    • Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.53-57
    • /
    • 1996
  • Polysulfone ultrafiltration membrane was coated with polyisobutylene(PIB) as a top layer to separate chlorinated hydrocarbons. The solubility parameter differences between PIB, water and perchloroethylene(PCE) or trichloroethylene(TCE) show that the solubility parameter difference between PIB and TCE or PCE is similar while that between PIB and water is far less, indicating that PIB is selective to chlorinated hydrocarbons. The pervaporation separation of TCE and PCE shows that TCE is concentrated more than four times, by PIB composite membrane, while PCE is concentrated more than thirteen times. This result shows that PIB composite membrane in this study seems to be an appropriate selective layer for the separation of TCE and PCE from aqueous organic solutions.

  • PDF

An Adaptive Multilevel Successive Elimination Algorithm (적응적 다단계 연속 제거 알고리즘)

  • Ahn, Tae-Gyoung;Moon, Yong-Ho;Kim, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.111-118
    • /
    • 2004
  • In this paper, an adaptive multilevel successive algorithm is presented. The algorithm introduces an adaptive initial level scheme to the conventional multilevel successive algorithm (MSEA). It efficiently removes the unnecessary computations required for judging the invalid candidate blocks at redundant level. The simulation results show that the proposed algorithm obtains the optimal motion vector with reduced computations compared to MSEA.

High Available De-Duplication Algorithm (고가용성 중복제거(De-Duplication) 기법)

  • Lee, Choelmin;Kim, Jai-Hoon;Kim, Young Gyu
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.274-277
    • /
    • 2012
  • 중복 제거(De-duplication) 기법은 파일시스템 내에서 동일한 내용의 데이터 블록이나 파일의 중복을 제거하여 유일한 내용만을 보관함으로써, 저장장치의 낭비를 막을 수 있다. 상반된 개념으로 결함극복을 위하여 동일한 파일시스템이나 시스템 구성요소를 복제(이중화)함으로써, 일부 시스템 결함시 복제(이중화)된 다른 시스템을 이용하여 신뢰성과 가용도를 향상시킬 수 있다. 그러나 결함 극복을 위한 파일시스템의 이중화는 저장장치의 낭비화 복제된 파일시스템의 일치성 유지에 비용이 소요된다. 본 논문에서는 일정 수준의 가용도를 유지하기 위한 중복제거 기법을 제안하고 성능을 평가하였다. 제안하는 고가용도 중복제거 기법에서는 요구되는 가용도를 유지할 수 있는 범위내에서 중복을 제거하며, 필요에 따라 선택적으로 중복을 유지할 수 있도록 한다.

Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity (문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안)

  • Lee, Min Seok;Yang, Seok Woo;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.105-122
    • /
    • 2019
  • Dimensionality reduction is one of the methods to handle big data in text mining. For dimensionality reduction, we should consider the density of data, which has a significant influence on the performance of sentence classification. It requires lots of computations for data of higher dimensions. Eventually, it can cause lots of computational cost and overfitting in the model. Thus, the dimension reduction process is necessary to improve the performance of the model. Diverse methods have been proposed from only lessening the noise of data like misspelling or informal text to including semantic and syntactic information. On top of it, the expression and selection of the text features have impacts on the performance of the classifier for sentence classification, which is one of the fields of Natural Language Processing. The common goal of dimension reduction is to find latent space that is representative of raw data from observation space. Existing methods utilize various algorithms for dimensionality reduction, such as feature extraction and feature selection. In addition to these algorithms, word embeddings, learning low-dimensional vector space representations of words, that can capture semantic and syntactic information from data are also utilized. For improving performance, recent studies have suggested methods that the word dictionary is modified according to the positive and negative score of pre-defined words. The basic idea of this study is that similar words have similar vector representations. Once the feature selection algorithm selects the words that are not important, we thought the words that are similar to the selected words also have no impacts on sentence classification. This study proposes two ways to achieve more accurate classification that conduct selective word elimination under specific regulations and construct word embedding based on Word2Vec embedding. To select words having low importance from the text, we use information gain algorithm to measure the importance and cosine similarity to search for similar words. First, we eliminate words that have comparatively low information gain values from the raw text and form word embedding. Second, we select words additionally that are similar to the words that have a low level of information gain values and make word embedding. In the end, these filtered text and word embedding apply to the deep learning models; Convolutional Neural Network and Attention-Based Bidirectional LSTM. This study uses customer reviews on Kindle in Amazon.com, IMDB, and Yelp as datasets, and classify each data using the deep learning models. The reviews got more than five helpful votes, and the ratio of helpful votes was over 70% classified as helpful reviews. Also, Yelp only shows the number of helpful votes. We extracted 100,000 reviews which got more than five helpful votes using a random sampling method among 750,000 reviews. The minimal preprocessing was executed to each dataset, such as removing numbers and special characters from text data. To evaluate the proposed methods, we compared the performances of Word2Vec and GloVe word embeddings, which used all the words. We showed that one of the proposed methods is better than the embeddings with all the words. By removing unimportant words, we can get better performance. However, if we removed too many words, it showed that the performance was lowered. For future research, it is required to consider diverse ways of preprocessing and the in-depth analysis for the co-occurrence of words to measure similarity values among words. Also, we only applied the proposed method with Word2Vec. Other embedding methods such as GloVe, fastText, ELMo can be applied with the proposed methods, and it is possible to identify the possible combinations between word embedding methods and elimination methods.

Simultaneous Single Band Duplex System for the Spectrum Efficiency Improvement (스펙트럼 효율 향상을 위한 동일대역 동시 통신 (Simultaneous Single Band Duplex) 시스템)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.9
    • /
    • pp.810-816
    • /
    • 2013
  • In this paper, we propose a SSD (simultaneous single-band duplex) system using Digital Cancellation. Also, we propose a method for Digital Cancellation when RF Cancellation is effectively performed. The proposed system has estimation frame for effective self-interference channel estimation in time-domain. The proposed system calculates signal power for selection of optimal coefficient after digital cancellation. Then, the proposed system selects coefficient of minimum signal power. Further, the proposed system uses LDPC code to minimize the effects of remaining self-interference signal. The proposed system shows BER performance of at 20dB by cancelling self-interference and iterating LDPC code. That is, the proposed system shows that the SSD communication is possible in static self-interference channel.

Pancreatin Production by Removal of Lipid from Hog Pancreas using Supercritical Carbon Dioxide with Entrainer (초임계 이산화탄소와 보조용매를 이용한 돼지췌장 지질제거에 의한 판크레아틴의 생산)

  • 권혁수;박선영;전병수
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.301-305
    • /
    • 2003
  • The study of pancreatin extraction was investigated by supercritical fluid process. Using supercritical carbon dioxide extraction with entrainer the purification of pancreatin was possible to remove lipids from Hog pancreas. To observe the optimum conditions different experimental variables were changed as pressure, temperature, flow rate of solvent and 0.25 mm of sample size were evaluated for effective removal of lipids. Ethanol and n-hexane were used as an entrainer with 5 mL/min. Increasing pressure at constant temperature the efficiency of the lipid removal in Hog pancreas was improved and the protein was concentrated without denaturalization, compared that of the control Hog pancreas. The most efficient conditions of lipid elimination were 17 MPa of pressure and 35$^{\circ}C$ of temperature and 0.25 mm of sample size.