• Title/Summary/Keyword: 선체 형상

Search Result 125, Processing Time 0.023 seconds

An Assembly Simulation of a Plane Block with Gravity and Welding Deformations (자중과 용접변형을 고려한 평블록 조립 시뮬레이션)

  • Jae-Gyou Roh;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.122-133
    • /
    • 1999
  • Overlap, excessive wide gaps, and errors between blocks during erection process increases cost and man-hour. In this paper, a system to simulate the assembly process is suggested and a plane block assembly of welding deformation with gravity is simulated in consideration of assembly order, deformations and errors occurring in the cutting and forming processes are not considered and welding deformations are acquired by equivalent stiffness and load method from experiments and hull double bottom plane block is assembled on a assembly order by panel method. It is certified that according to the order of assembly, intermediate product shape affects rigidity which affects welding deformations. Assembly order must be considered in the assembly process. It is certified that the gravity has important role in the assembly process.

  • PDF

An Algorithm on Determination of Process Parameters for Roller Bending of Curved Shell Plates (선체 곡판의 롤 굽힘 공정 변수 결정을 위한 가공 형상의 최적 근사 알고리즘)

  • Ryu, Cheol-Ho;Lee, Jang-Hyun;Yoon, Jong-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.517-525
    • /
    • 2007
  • This paper presents how to approximate an optimal shape of roll bending process in the fabrication of a curved shell plate. The roll bending process usually makes the cylindrical or conic shape from an initial flat plate. It means that the final shape is developable or its surface representation has zero Gaussian curvature. The fabrication shape is important in order to find process parameters of roil bending. An optimal concept is used to determine the developable fabrication shape which is in the closest proximity to the design surface or the given shell plate and is subject to developability. The results and the efficiency of this algorithm are evaluated by applying to some shell plates. Furthermore, the fabrication shape will be fundamental information for other process parameters of roll bending such as the vertical displacement of the center roller and the rolling directions.

A Study on Thermal Characteristics of Stratospheric Airship Influenced by Solar Radiation (태양복사에너지에 의한 성층권 비행선의 열특성에 관한 연구)

  • Kim Min-Jung;Lee Dae-Won;Roh Tae-Seong;Choi Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.89-96
    • /
    • 2005
  • This study has been performed on the mechanism of heat transfer between stratospheric airship and its surroundings while the airship is staying in the air at the altitude of 20km. The computational grid of airship has been generated and the results influenced by the number and the shape of grids have been compared. The temperature distributions have been obtained through this thermal analysis considering three modes of heat transfer - conduction, convection and radiation - in stratospheric conditions. Based on the airship's surface and inner temperature variations, the influence of temperature distributions on the helium envelope and the payload has been predicted.

A Study on the Resistance Characteristics of Leisure Boat According to Chine Shape (차인 형상에 따른 레저선박의 저항특성에 관한 연구)

  • Kim, Juyeol;Choi, Junho;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.566-573
    • /
    • 2017
  • The chine of high speed vessels does not only play a role in changing position when planing but also helps balancing the hull. It also has a great influence on resistance performance. However, designing a chine requires a lot of experience because it is influenced by various factors such as displacement, transom shape, draft and width. Such a design is not based on an empirical formula, but the purpose of this study is to provide basic guidelines regarding the shape of chine through calculation. This design was developed using Yacht-one, a commercial design program, and analysis was performed using Star-CCM+, also a commercial analysis program. Analysis of the hull selected in this study was carried out by Dynamic Fluid Body Interaction (DFBI) method. Analysis of the chine was carried out at chine angles of 15, 16, 17, and 19degrees, at a speed of 30knots. The result indicated that the highest trim occurred at 16 degrees among the four chine angles considered, and the highest heave occurred at 15degree. In terms of resistance performance, minimum resistance was observed at 16 degrees. Consequently, for minimum ship resistance, it is necessary to complete calculations in accordance with the chine angles, ${\pm}2$ degrees from the initial chine angle, which should be carried out a the design stage.

Vibration Analysis of Quadrangular Plate having Attachments by the Assumed Mode Method (Assumed Mode Method에 의한 부가물(附加物)을 갖는 임의(任意) 사각형(四角形) 평판(平板)의 진동해석(振動解析))

  • S.Y. Han;Y.C. Huh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.116-125
    • /
    • 1995
  • In ship and of offshore structures, there exist many local panels of various shapes having many kinds of attachments reducible to damped spring-mass systems. For the vibration analysis of panels, analytical methods such as Rayleight-Ritz method or the assumed mode method can be efficiently applied. There have been many studies on the vibration analysis of rectangular panels using the analytical methods but relatively few for arbitrary shape panels. An efficient formulation based on the assumed mode method is presented for the vibration analysis of an arbitrary quadrangular plate having concentrated masses, supporting springs such as pillars and spring-mass systems. In the formulation, the natural coordinate system is used for the efficient treatment of an arbitrary quadrangular shape. Through some numerical calculations, accuracy and efficiency of the presented method are shown.

  • PDF

Flow-Induced Noise Prediction for Submarines (잠수함 형상의 유동소음 해석기법 연구)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seol, Hanshin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.930-938
    • /
    • 2018
  • Underwater noise radiated from submarines is directly related to the probability of being detected by the sonar of an enemy vessel. Therefore, minimizing the noise of a submarine is essential for improving survival outcomes. For modern submarines, as the speed and size of a submarine increase and noise reduction technology is developed, interest in flow noise around the hull has been increasing. In this study, a noise analysis technique was developed to predict flow noise generated around a submarine shape considering the free surface effect. When a submarine is operated near a free surface, turbulence-induced noise due to the turbulence of the flow and bubble noise from breaking waves arise. First, to analyze the flow around a submarine, VOF-based incompressible two-phase flow analysis was performed to derive flow field data and the shape of the free surface around the submarine. Turbulence-induced noise was analyzed by applying permeable FW-H, which is an acoustic analogy technique. Bubble noise was derived through a noise model for breaking waves based on the turbulent kinetic energy distribution results obtained from the CFD results. The analysis method developed was verified by comparison with experimental results for a submarine model measured in a Large Cavitation Tunnel (LCT).

A Study on Flexibility Acquisition Method for VLCC Shaft System (VLCC 축계 시스템의 유연성 확보 방안에 관한 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.135-139
    • /
    • 2017
  • The main reason for heat accidents occurring at the after stern tube bearing (STB) is excessive local pressure caused by the deflection of the propulsion shaft due to propeller loads. The probability of a heat accident is increased by the low flexibility of the shaft system in very large crude oil carriers (VLCCs) as the engine power and shaft diameter increase and the distance decreases between the forward and after STBs. This study proposed shaft system with only an after STB and no forward STB for a flexibility acquisition method for a VLCC shaft system under hull deformation. A Hertzian contact condition was applied, which assumes a half-elliptical pressure distribution along the contact width for the calculation of the local squeeze pressure. The propeller loads, heat effect, and hull deflection under engine operating conditions are also considered. The results show that the required design criteria were satisfied by building a partial slope at the white metal, which is the material at the axial contact side in the after STB. This system could reduce building cost by simplification of the shaft system.

Sunken Ship Precision Image Analysis Using Multi-Beam Echo Sounding Data (다중빔음향측심 자료를 이용한 침몰선박 정밀영상 분석 연구)

  • Lee, Seung-Hyun;Seo, Young Kyo;Suh, Jae-Joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.863-868
    • /
    • 2016
  • In this study, the precise shapes of sunken ships and information on seafloor topography were analyzed using data obtained from a multi-beam echo sounder. The state of each sunken ship was analyzed by processing diverse imagery data which was compared with data obtained from past investigations to determine changes in the state and circumjacent seafloor topography. Apparent changes in the seafloor topography around one sunken ship, the "Pacific Friend", were found from stern to bow as a result of continued submarine erosion and sedimentation. In the case of sunken ship "No. 7 Haeseong", the partial collapse of the bow was revealed in the seabed images captured in 2015, though it had still been intact in images captured during the Korea Hydrographic and Oceanographic Agency's investigation in 2011. This partial collapse was presumed to have resulted from the effects of continued tidal currents, the cargo load of the ship and continued corrosion of the ship over a long time on the seabed. Continuous monitoring of residual fuel inside the ship is necessary to avoid leakage and potential marine pollution. By conducting image analysis on these sunken ships, it has been determined that the structural safety of the ships is seriously influenced by tidal currents and seafloor topography, while the hulls will be continuously changed by corrosion. As a result, it can be concluded that the development of prediction and response techniques that take into consideration residual fuel leakage and environmental changes according to the geological characteristics of sunken ships is necessary.

An Experimental Study of Characteristics of Plate Deformation by Heating Process (열간가공에 의한 판의 변형특성에 관한 실험적 연구)

  • Chang-Doo Jang;Dae-Eun Ko;Byeong-Il Kim;Jeong-Ung Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.2
    • /
    • pp.62-70
    • /
    • 2001
  • As the ship hull is a compound-curved structure, plate bending process is indispensible. The process includes press bending process for forming major 1st curvature and heating process for forming the rest curvature. Especially the heating process that is above 50 percents of entire bending work is carried out exclusively by skillful workers. Many researches have been made to automate the heating process but most of these are about line heating process and researches for triangle heating process are rare. This study is a fundamental study to develop a efficient analysis method for triangle heating and focused on clarifying the deformation characteristics of plate by triangle heating. In this paper, we carried out heating experiments and analysed the deformation characteristics of plate to explain the deformation characteristics of plates rationally by showing the phase transformed high temperature region. Also we investigated the heating effect on the hull material properties by mechanical tests.

  • PDF

Interaction of Encountering Two Ships with Varying Speed in Calm Water (정면으로 마주치는 선박의 선속에 따른 상호 간섭력에 관한 연구)

  • Lee, Sang-Do;Kim, Dae-Hae;Kong, Gil-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.11-12
    • /
    • 2015
  • 두 선박이 정면에서 마주치며 선박간 상호 통항하거나 상대선을 추월할 경우 각 선박의 선체형상과 선속에 의한 유체력 상호작용에 따른 선박간 간섭력이 발생한다. 선박간 간섭력의 주요한 평가 요소인 횡력과 회두 모멘트의 측정을 통해 두 선박이 근접하였을 때의 위험도와 충돌을 예측할 수 있다. 선행된 간섭력에 관한 연구는 대부분 경험에 의하거나 이론적인 측면에서 관련 연구가 진행되어왔으며, 학계에서 통상적으로 널리 알려진 뉴턴의 연구(1960)에서는 깊은 수심에서 두 선박을 평행하게 항주시켰을 때 선박간 최대 흡인력은 두 선박이 정횡으로 나란하게 위치되는 지점에서 발생하고, 이때의 간섭력은 선속의 제곱에 비례한다고 추정하였다. 현대의 조선기술이 발전함에 따라 선박의 크기는 점점 대형화되고 선박의 운항 효율성 증진을 위한 다양한 선형이 개발되어 실선에 적용되고 있다. 이런 경향에 따라 과거에 비해 현대 선박 운항환경에서의 선박간 간섭은 선박의 크기 및 선형에 의한 영향이 클 것으로 판단된다. 본 연구에서는 선박의 종류별로 대표 선종을 선정하여 두 선박이 정면에서 마주치며 통과하는 운항조건에서의 선속 증가에 따른 선박 상호간 간섭력의 변화를 통상적으로 사용되는 선박조종시뮬레이터를 이용하여 실험 및 분석하여 상관관계를 도출하였다. 선박 유형에 따른 시뮬레이션 실험 결과 최대 횡력은 주로 선미 부근에서 발생하였고 최대 회두모멘트는 선수가 근접할 때 발생하였으며, 선속이 증가할수록 선박 상호간 근접거리가 좁혀졌고 선형별로 각기 다른 선속에서 선미 충돌이 발생하였다. 이 실험연구는 선형에 따른 선박 상호간 근접 시의 횡거리와 통과속력에 대한 기준 설정의 연구 근간을 마련하였고 선박간 교항시 안전운항을 위한 지침이 될 것으로 판단된다.

  • PDF