• Title/Summary/Keyword: 선체고정소나

Search Result 7, Processing Time 0.02 seconds

Multiple vertical depression-based HMS active target detection using GSFM pulse (GSFM 펄스를 이용한 다중 수직지향각 기반 선체고정소나 능동 표적 탐지)

  • Hong, Jungpyo;Cho, Chomgun;Kim, Geunhwan;Lee, Kyunkyung;Yoon, Kyungsik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.237-245
    • /
    • 2020
  • In decades, active sonar, which transmits signals and detects incident signals reflected by underwater targets, has been significantly studied since passive sonar in Anti-Submarine Warfare (ASW) detection performance becomes lowered, as underwater threats become their radiated noise reduced. In general, active sonar using Hull-Mounted Sonar (HMS) adjusts vertical tilt (depression) and sequentially transmits multiple Linear Frequency Modulation (LFM) subpulses which have non-overlapped bands, i. e. 1 kHz ~ 2 kHz, 2 kHz ~ 3 kHz, in order to reduce shadow zones. Recently, however, Generalized SFM (GSFM), which is generalized form of SFM, is proposed, and it is confirmed that subpulses of GSFM have orthogonality among each other depending on setting of GSFM parameters. Hence, in this paper, we applied GSFM to active target detection using HMS to improve the performance by the signal processing gain obtained from enlarged bandwidths of GSFM subpulses compared to those of LFM subpulses. Through simulation, we verified that when the number of subpulses is three, the matched filter gain of GSFM is approximately 5 dB higher than that of LFM.

A sea trial method of hull-mounted sonar using machine learning and numerical experiments (기계학습 및 수치실험을 활용한 선체고정형소나 해상 시운전 평가 방안)

  • Ho-seong Chang;Chang-hyun Youn;Hyung-in Ra;Kyung-won Lee;Dea-hwan Kim;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.293-304
    • /
    • 2024
  • In this paper, efficient and reliable methodologies for conducting sea trials to evaluate the performance of hull-mounted sonar systems is discussed. These systems undergo performance verification during ship construction via sea trials. However, the evaluation procedures often lack detailed consideration of variabilities in detection performance due to seabed topography, seasonal factors. To resolve this issue, temperature and salinity structure data were collected from 1967 to 2022 using ARGO floats and ocean observers data. The paper proposes an efficient and reliable sea trial method incorporating Bellhop modeling. Furthermore, a machine learning model applying a Physics-Informed Neural Networks was developed using the acquired data. This model predicts the sound speed profile at specific points within the sea trial area, reflecting seasonal elements of performance evaluation. In this study, we predicted the seasonal variations in sound speed structure during sea trial operations at a specific location within the trial area. We then proposed a strategy to account for the variability in detection performance caused by seasonal factors, using results from Bellhop modeling.

Four Segmentalized CBD Method Using Maximum Contrast Value to Improve Detection in the Presence of Reverberation (최대 컨트라스트 값을 이용한 4분할 CBD의 잔향 감소기법)

  • Choi, Jun-Hyeok;Yoon, Kyung-Sik;Lee, Soo-Hyung;Kwon, Bum-Soo;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.761-767
    • /
    • 2009
  • The detection of target echoes in a sonar image is usually difficult since reverberation is originated by the returns reflected around the boundary and volumes. Under the scenario of the target presence around the reverberation, the detection performance of existing algorithms is degraded. Since they have a similar statistical features. But proposed detector gives improvement existing algorithms Under this scenario. In this paper, 4 segmentation contrast box algorithm using maximum contrast value is proposed based on statistical segmentation, which gives better detection performance in the sense of reducing false alarms. The simulations validate the effectiveness of the proposed algorithm.

Performance Analysis of Own Ship Noise Cancellation in Hull Mounted Sonar System Using Adaptive Filter (HMS시스템에서 적응필터를 이용한 자함의 소음감소 성능분석)

  • Yoon, Kyung-Sik;Jung, Tae-Jin;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.10-17
    • /
    • 2010
  • In a passive sonar, the improvement of detection performance by using noise cancellation is usually a important problem. In this paper, we have analyzed the own-ship noise cancellation in the two operation modes which are used in the HMS system. In the operator mode, an adaptive line enhancer(ALE) is applied to improve the tonal detection by using broadband noise cancellation and the normalized least mean square(NLMS) algorithm is applied to the design of an adaptive filter. The reference input that is correlated with a primary input can be used to remove the noise incident on the observation directionin the automatic mode. Computer simulations with real sea that data show that the proposed adaptive noise canceller has good performance in passive detection under HMS operation.

Minimization of Shadow Zone for Hull Mounted Sonar (선체 고정형 소나의 음영 구역 최소화)

  • Lim, Se-Han;Han, Yun-Hoo;Jang, Chan-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.211-217
    • /
    • 2010
  • This paper introduces the Hull Mounted Sonar Vertical Scanning(HMS Verscan) technique to overcome the limitation of target detection in short range shadow zone. Numerical experiments were done with the HMS Verscan taking advantage of the vertical beamforming technique for two-dimension hydrospace(range-depth). For numerical experiments, ray model and high-frequency monostatic reverberation model were used. HMS Verscan increased a sound pressure level at the short range shadow zone through reflections at the sea surface and seafloor. Inclusion of the boundary scattering improved target detection due to the sound reflected into the shadow zone.

Modified Multiple Target Angle Tracking Algorithm with Efficient Equation for Angular Innovation (효율적인 방위각 이노베이션 계산식을 가진 수정된 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.25-29
    • /
    • 2011
  • Ryu et al. proposed a multiple target angle-tracking algorithm with efficient equation for angular innovation, and Ryu's algorithm has good feature that it has no data association problem. Ryu's algorithm is only applicable to linear sensor array, because its efficient equation for angular innovation is derived in case of using a linear sensor array. In a many fields studying multiple target angle-tracking, the various shapes of sensor array are used. In sonar, a cylindrical sensor array is as much used as a linear sensor array, a example is hull mounted sonar. In this paper, Ryu's algorithm is modified to be applicable to cylindrical sensor array, and the tracking performance of a modified algorithm is verified by various computer simulations.

Torpedo defense system research using HMS(Hull Mount Sonar) of PCC(Patrol Combat Corvette) (초계함용 HMS(Hull Mount Sonar)를 이용한 어뢰방어시스템 연구)

  • Kim, Hee-Earn;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2569-2574
    • /
    • 2012
  • HMS(Hull Mount Sonar) equipment mounted on PCC(Patrol Combat Corvette) is suitably designed for active mode, and the specific character of sensor or system is not appropriate for the frequency range to detect a torpedo. In this article, in order to implement the function of detecting torpedoes with HMS of existing PCC, I will analyze the feature of input signals each PCCs and design a circuit to compensate reversely for the input signal in certain frequency. And also, I will suggest the most adequate torpedo defense system suitable for the special operating environment and the characteristic of naval vessels, implementing functions such as AGC of input signal and fixing the frequency range of different input signals per different warships.