DOI QR코드

DOI QR Code

Multiple vertical depression-based HMS active target detection using GSFM pulse

GSFM 펄스를 이용한 다중 수직지향각 기반 선체고정소나 능동 표적 탐지

  • 홍정표 (국방과학연구소 해양기술연구원) ;
  • 조점군 (국방과학연구소 해양기술연구원) ;
  • 김근환 (경북대학교 전자공학부) ;
  • 이균경 (경북대학교 전자공학부) ;
  • 윤경식 (김천대학교 IT융복합공학과)
  • Received : 2020.05.07
  • Accepted : 2020.07.07
  • Published : 2020.07.31

Abstract

In decades, active sonar, which transmits signals and detects incident signals reflected by underwater targets, has been significantly studied since passive sonar in Anti-Submarine Warfare (ASW) detection performance becomes lowered, as underwater threats become their radiated noise reduced. In general, active sonar using Hull-Mounted Sonar (HMS) adjusts vertical tilt (depression) and sequentially transmits multiple Linear Frequency Modulation (LFM) subpulses which have non-overlapped bands, i. e. 1 kHz ~ 2 kHz, 2 kHz ~ 3 kHz, in order to reduce shadow zones. Recently, however, Generalized SFM (GSFM), which is generalized form of SFM, is proposed, and it is confirmed that subpulses of GSFM have orthogonality among each other depending on setting of GSFM parameters. Hence, in this paper, we applied GSFM to active target detection using HMS to improve the performance by the signal processing gain obtained from enlarged bandwidths of GSFM subpulses compared to those of LFM subpulses. Through simulation, we verified that when the number of subpulses is three, the matched filter gain of GSFM is approximately 5 dB higher than that of LFM.

수중표적의 저소음화로 표적의 방사소음이 감소함에 따라 수동소나의 한계가 나타나면서 신호를 송신하고 표적 반사 신호를 탐지하는 능동탐지에 대한 연구가 활발해 지고 있다. 일반적으로 선체고정소나(Hull-Mounted Sonar, HMS)를 이용한 능동탐지 시 음파가 도달하지 않는 음영구역을 줄이기 위해 수직지향각을 조정하면서 다수의 Linear Frequency Modulation(LFM) 부펄스를 대역분할하여 순차적으로 송신한다. 하지만 최근에 Sinusoidal Frequency Modulation(SFM)의 일반화된 형태인 Generalized SFM(GSFM) 펄스가 제안되었고, 파라미터 설정에 따라 GSFM 부펄스 간에 직교성이 확인되었다. 따라서, 본 논문에서는 GSFM을 선체고정소나의 다중 수직지향각 능동탐지에 활용함으로써 부펄스의 대역폭 사용을 극대화 하여 신호처리 이득에 따른 능동탐지 성능을 향상 시킬 수 있음을 보였다. 모의실험을 통해 부펄스가 3개일 때, GSFM이 LFM 대비 약 5 dB 정도의 정합필터 이득이 있음을 확인하였다.

Keywords

References

  1. A. A. Winder, "II. Sonar system technology," IEEE Tran. Sonics Ultrason. 22, 291-332 (1975). https://doi.org/10.1109/T-SU.1975.30813
  2. W. C. Knight, R. G. Pridham, and S. M. Kay, "Digital signal processing for sonar," Proc. IEEE, 69, 1451-1506 (1981). https://doi.org/10.1109/PROC.1981.12186
  3. A. D. Waite, Sonar for Practising Engineers, 3rd ed. (John Wiley & Sons, West Sussex, U.K. 2002), pp. 125-219.
  4. T. G. Bell, Probing the Ocean for Submarines: A History of the AN/SQS-26 Long-Range, Echo-Ranging Sonar (Warfare centers, NAVSEA, Newport, 2010), pp. 1-58.
  5. D. A. Hague and J. R. Buck, "The generalized sinusoidal frequency-modulated waveform for active sonar," IEEE J. Ocean. Eng. 42, 109-123 (2017). https://doi.org/10.1109/JOE.2016.2556500
  6. D. A. Hague and J. R. Buck, "The generalized sinusoidal frequency modulated waveform for continuous active sonar," OCEANS 2015-Genova. IEEE 1-8 (2015).
  7. D. A. Hague, The generalized sinusoidal frequency modulated waveform for active sonar systems: A dissertation in electrical engineering (Ph.D. thesis, University of Massachusetts Dartmouth, 2015).
  8. G. Kim, K. Yoon, D, Lee, C. Cho, J. Hong, and K. Lee, "Design of the robust generalized sinusoidal frequency modulated pulse in reverberation environments" (in Korean), J.ksiis. 24, 95-104 (2009).
  9. C. Guan, Z. Zhou, and X. Zeng, "Optimal waveform design using frequency-modulated pulse trains for active sonar," Sensors, 19, (2019).
  10. R. J. Urick, Principles of Underwater Sound 3rd ed. (Peninsula Publising Los Atlos, California, 1983), pp. 147-197.