• Title/Summary/Keyword: 선상지분포

Search Result 68, Processing Time 0.022 seconds

The Distribution and Geomorphic Development of Alluvial Fans along the Bulguksa Fault System in Gyeongju and Ulsan City, Southeastern Korea (한국 남동부 경주 및 울산시 불국사단층선 지역의 선상지 분포와 지형발달)

  • 황상일;윤순옥
    • Journal of the Korean Geographical Society
    • /
    • v.36 no.3
    • /
    • pp.217-232
    • /
    • 2001
  • One of the molt debatable Issues on geomorphological study in Korea should be the discussion over the formation process of gent1e slope surfaces on the piedmont area. In this study, the characteristics of spatial distribution and the formation process of geomorphic surfaces were investigated by classifying the alluvial fans as three geomorphic surfaces alluvial the Bulguksa fault-line The fan surfaces, distributed along the west slue of Bulguksa Mts, consists the confluent alluvial fans continuously along the N-S direction The surfaces of Sincheon-Hyomun district juxtaposed to the Ulsan Bay must be infulenced by sea-level chance during the Quaternary Taken together, these observation suggests that the major four factors contributed to the fan formation 1) rather longer freeze-and-thaw cycle during the Glacial period. 2) the steep mountain slope along the west side of Bulguksa Mts.. which had been resulted from the horizont stress of EAst Sea 3)the tectolinear fault system developed by structural movement along the Bulguksa Fault-line valley. and 4) the erosion-labile characteristics of bedrock In this urea which is consisted of the Bulguksa granite and the sedimentary rock formed in Cretaceous period.

  • PDF

The Ceomorphic Development of Alluvial Fans in Cheongdo Basin, Gyeongsangbuk-do( Prevince), South Korea (경북 청도분지의 선상지 지형발달)

  • Hwang Sang-Ill
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.4
    • /
    • pp.514-527
    • /
    • 2004
  • We investigated the distribution and geomorphic development of alluvial fans at Cheongdo- and Hweyang-eup(town) in the Cheongdo Basin, Gyeongsangbuk-do(Province) of Korea. The alluvial fans of study area are formed confluently to the E-W direction at the northern slope of the Mt. Namsan(840 m). They are classified into Higher surface, Middle surface, and Lower surface according to a relative height to a river bed. And the older alluvial fan is, the deeper gravel in the stream deposits is weathered. The magnitude of each surface composing of confluent fans is related to that of the drainage basin. So called fan-basin system of magnitude on the study area is on the positive(+) relation in the study area. The large fans over 1km in radius are found on the basin of andesite rock which is resistant to the weathering and erosion. Moreover there is no tectonic movement in the basin. It means the most important element influenced on the fan formation is not tectonic movement, but the Quaternary climatic change, which is the periglacial climate alternating glacial and interglacial stages during the Quaternary. Therefore alluvial fans would distribute in Korea overall influenced by the Quaternary climatic change.

The Geomorphic Development of Alluvial Fans in the Cyeongju City and Cheonbuk area, Southeastern Korea (경주 및 천북 지역의 선상지 지형발달)

  • 윤순옥;황상일
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.1
    • /
    • pp.56-69
    • /
    • 2004
  • We investigated the distribution and geomorphic development of alluvial fan in Gyeongju City including Cheonbuk area. According to a relative height to a river bed, alluvial fans of this area are divided into Higher surface, Middle surface, and Lower surface. As alluvial fans of Bulguk temple∼Ulsan bay area, the confluent fans in Cheonbuk and Gyeongju areas were formed by the Quaternary climatic change alternating glacial and interglacial stages, and the development of N-S and NW-SE fault lines. The Gyeongju alluvial fan, the largest in Korea, has been provided as the significant space for human activity since the prehistoric age. Bukcheon river formed the Gyeongju alluvial fan had not flowed over during the prehistoric and the ancient times. In contrast with general geomorphic characteristics, many springs in the Gyeongju alluvial fan are located in the middle part of the fan because ground water reaches to the surface. It is supposed that sedimental materials were not sufficiently piled up at lower reach of Bukcheon river due to the large deposits at upper and middle reach of the basin.

The Theoretical Study and Distributional Characteristics of Alluvial Fans in Korean Peninsula (한국 선상지의 이론적 고찰과 분포특성)

  • Saito Kyoji;Hwang Sang-Ill;Tanaka Yukiya;Oguchi Takashi;Yoon Soon-Ock
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.3 s.108
    • /
    • pp.335-352
    • /
    • 2005
  • The question of whether fan type surface developed at the foot of mountains is pediment or alluvial fan has been discussed consistently through the Korean geomorphic history. Unfortunately the term, 'alluvial fan' was scarcely used, also even the existence of alluvial fan has been denied throughly for a long time in Korea. The negation of alluvial fan brought some difficulties in the development of the related Geomorphology. In order to resolve such a problem, more logical and exquisite theory by examination of geomorphic process must be systematically presented on the basis of overall problem recognition. The objective of this study is to represent the theoretical indicator based on the investigation of the points at issue that the existence of alluvial fan in Korea was denied. Moreover, we selected 13 alluvial fans in southern part of Korean Peninsula to compare with the worldwide alluvial fans according to theoretical indicator, and analysed their geomorphic distributional characteristics.

The Geomorphological Significance of Gyeongiu Alluvial fan and Fans in Korean Peninsula (한국의 선상지와 경주선상지의 지형적 의의)

  • 사이토쿄지;윤순옥;황상일
    • Proceedings of the KGS Conference
    • /
    • 2004.05a
    • /
    • pp.40-40
    • /
    • 2004
  • 지형학연구의 주요 쟁점의 하나는 한반도 산록에 분포하는 완만한 지형면 형성과 정에 관한 논의이다 한국 지형학계의 일각에서는 안정지괴에 속한 한반도에는 선상지발달이 불리하고 친식지형이 일반적이라는 편견이 있어, 산록완사면이 페디멘트로 이해되고 선상지 차체를 부인하는 경향이 있다. 또한 선상지와 하안단구, 해안단구 대부분이 페디멘트와 같은 과정을 거쳐 형성된 것으로 해석되면서 대학의 지형학 교재나 일부 교과서에 반영되어 혼란이 야기된다. (중략)

  • PDF

Survey of Geomorphological Resources of 'Daegu Innovation Town' Development Plan Area (대구 혁신도시 개발예정지의 지형자원 조사)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.2
    • /
    • pp.173-188
    • /
    • 2008
  • In order to make comparative analysis of geomorphological changes caused by urban development, I surveyed the distribution of geomorphological resources of 'Daegu Innovation Town' development plan area. The results are as follow: (1) At the front of small valleys of back-mountains are formed small alluvial fans, and at the side of small valleys are distributed hills connected with back-mountains. (2) As small valley erode laterally hills, vertical bluffs and planner bedrock riverbed are formed, and in some riverbed are appeared mud cracks and ripple marks. (3) The depth of valley in alluvial fan of 'Sinseo District' is 7m. In Sinseocheon valley dissecting alluvial fan, fluvial terraces 2m high above riverbed are distributed. Those terraces were formed while alluvial fan was dissected after last glacial period.

  • PDF

Data Process and Precision Analysis of Ship-Borne Gravity (선상 중력자료의 처리 및 정밀도 분석)

  • Keum, Young-Min;Kwon, Jay-Hyoun;Lee, Ji-Sun;Choi, Kwang-Sun;Lee, Young-Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.89-97
    • /
    • 2010
  • The ship-borne gravity data is essential to construct geoid in Korea surrounding ocean area. The altimeter data was used in previous study, however, the ship-borne gravity data could be used due to more ship-borne data was collected by improvement of instrument, positioning system. Therefore, the study on verification of precision of ship-borne gravity data and practical usage analysis is needed. In this study, free-air anomaly having 16.47mGal and 18.86mGal as mean and standard deviation was obtained after consistent processing such as Eotvos correction, Kalman Filter, Cross-over adjustment etc. The calculated free-air anomaly was compared to DNSC08 altimeter data and the difference was computed having -0.88mGal and 9.46mGal of mean and standard deviation. The reason causing those differences are owing to spatial limits of data acquisition and effects of ocean topography. To use ship-borne gravity data for precision geoid development, the efforts to overcome the limits of data collection and study for data combination should be proceeded.

Geomorphic development of the Jeogchung·Chogye Basin and inner alluvial fan, Hapcheon, South Korea (합천 적중·초계분지와 분지 내 선상지 지형발달)

  • Hwang, Sangill;Yoon, Soon-Ock
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.225-239
    • /
    • 2016
  • The Jeogchung Chogye Basin shows perfect basin formation surrounded with divides, excluding outlet where Sannae River combining various small rivers escapes the basin. High mountains distribute at southwestern, southern and southeastern divides of the basin consisting of hornfels, while hilly mountains are found at northern divide consisting of sedimentary rock. Alluvial fans and flood plains occupy bottom of the basin. While extensive alluvial fans are found at the front of southern divide where rivers with large drainage areas rise, alluvial fans toward eastern and western divides become small due to low elevation of divides. Flood deposits by Hwang River are attributed to development for most of flood plains at northern part of the basin. The basin seems to be developed not by differential erosion or meteorite impact, but by bedrock weathering along lineament or fault lines by ground motion.

  • PDF

Structure and Physical Property of the Crust of Mid-west Korea: Analysis of Sedimentary Basins in the Namyang and Tando Areas, Kyeonggi Province, Korea (한반도 중서부 지각구조와 물성 연구: 경기도 화성군 남양 및 안산시 탄도지역에 분포하는 퇴적분지의 분석)

  • Park, Sung-Dae;Chung, Gong-Soo;Jeong, Ji-Gon;Kim, Won-Sa;Lee, Dong-Woo;Song, Moo-Young
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.563-582
    • /
    • 2000
  • Two Cretaceous(80-90 Ma) non-marine sedimentary basins, Namyang and Tando Basins, are distributed in the Namyang area, Hwaseonggun and in the Tando area, Ansanshi, Kyungki Province, Korea. The Namyang and Tando Basins are composed of 10 facies, which are pooped into 5 facies associations(FA). FA I consists of massive conglomerate facies, normally graded conglomerate facies and reversely graded conglomerate facies, which is interpreted to have been formed by laminated sandstone facies, massive conglomerate facies(channelized), which is thought to have been formed by sheet flow, stream flow and suspension sedimentation in an alluvial/braided plain environment. FA III consists of massive mudstone(pebbly) facies, laminated mudstone facies, massive sandstone facies and is interbedded by channel-fill conglomerate. It is interpreted to have been deposited by suspension settling during flooding and channel-fill deposition in a floodplain environment. FA IV consists of massive conglomerate facies, normally graded conglomerate facies, massive sandstone facies, normally graded sandstone facies, and laminated sandstone facies and is interbedded with mudstone facies. It is thought to have been deposited by debris flow and turbidity current in a fan-delta environment. FA V consists of massive mudstone facies, laminated mudstone facies, laminated sandstone facies and is interbedded by massive conglomerate bed. It is thought to have been formed by suspension sedimentation and low-density turbidity current in a lake. In the Namyang Basin FA I is distributed in the eastern and southern margin of the basin, FA II in the middle part of the basin as north-south tending band. and FA III in the western part. In the Tando Basin FA II is distributed in the middle part of eastern margin and in the northwestern margin, FA IV in the southwestern part, and FA V in the central part. Correlation of the facies associations shows that FA I and II in the Namyang Basin are distributed in the lower to middle part of stratigraphic sequence and FA III in the upper part of the sequence whereas FA II and IV in the Tando Basin are in the lower to middle part and FA V in the upper part of the sequence. These patterns of facies associations distribution suggest that the Namyang Basin was developed as an alluvial fan and alluvial/braided plain at first and then evolved into a floodplain whereas the Tando Basin was developed as a fan-delta and alluvial/braided plain at first and then evolved into a lake environment.

  • PDF