• Title/Summary/Keyword: 선별성능

Search Result 443, Processing Time 0.026 seconds

Seed기반의 short read aligner 구현에 관한 연구

  • Ji, Mingeun;Kim, Jeongkyu;Yi, Gangman
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.1107-1109
    • /
    • 2019
  • 차세대 게놈 시퀀싱(NGS) 기술이 발전하면서 방대하게 축적된 유전체 데이터를 분석하기 위해 다양한 시퀀스 정렬 연구가 진행되고 있다. 시퀀스 정렬 중 잘 알려진 BLAST에서는 휴리스틱 기반의 시퀀스 정렬을 수행하여 긴 리드 시퀀스에 대해 속도와 안정성이 보장되지만 짧은 리드 시퀀스에 대해서는 성능이 저하되는 문제가 있다. 이 문제를 해결하기 위해 본 논문에서는 레퍼런스 시퀀스와 쿼리 시퀀스를 Seed 기반으로 분리하여 정렬을 수행한다. 최종적으로는 contig를 추출하고 레퍼런스-쿼리간 유효한 contig만 선별하여 빠르게 짧은 리드 시퀀스들의 정렬을 수행할 수 있는 정렬기를 구현하고자 한다.

Applying Labeled LDA to Author Keywords Recommendation (Labeled LDA를 이용한 저자 주제어 추천)

  • Bong, Seong-Yong;Hwang, Kyu-Baek
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.385-389
    • /
    • 2010
  • 논문에 부여되는 저자 주제어(author keyword)는 논문을 분류 및 검색하는데 활용될 수 있다. 이렇게 주제어를 부여할 때 자동으로 저자 주제어를 추천한다면 사용자에게 편리성을 제공하고 저자가 직접 부여한 저자 주제어 이외에 추가적으로 주제어가 있는지도 확인할 수 있어 유용하다. 본 연구에서는 논문에 달려있는 다수의 주제어 중 하나의 주제어를 선별하여 Labeled LDA를 이용해 주제어와 초록(abstract)의 관계를 학습했다. 이후 초록이 주어지면 자동으로 저자 주제어를 부여할 수 있도록 추천하는 기법을 제안하고 그에 따른 실험을 진행했다. 본 논문에서는 실험을 통하여 기계학습을 이용한 저자 주제어의 추천이 어느 정도의 성능을 보이는지 평가하고 향후 연구의 방향을 제시한다.

  • PDF

Extraction Method of Face Area in Movie Using MRCNN (MRCNN을 이용한 영화속 등장인물 면적추출 방법)

  • Kim, Yeonghuh;You, Eun Soon;Kang, SooHwan;Park, Seung-Bo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.51-52
    • /
    • 2019
  • 본 연구는 영화에 대한 정량적 분석을 위해 MRCNN을 활용한 영화 속 등장인물의 얼굴 면적을 검출하였다. MRCNN을 선택한 이유는 기존 얼굴 인식 시스템이 갖는 한계(뒷모습, 누워있는 모습의 측정 오류)의 개선과 면밀한 계산을 하고자 함이었다. 영화 한편에서 주인공과 상대주인공이 함께 등장한 씬을 선별한 726개의 이미지 중 496개의 이미지가 마스킹이 됨으로서 68%의 성능을 보였다. 반면에 230개의 이미지 파일에서는 다소 문제가 발견되어 32%의 오차가 발생했다. 오차를 개선하기 위해서 주요 인물을 학습시킨 뒤 마스킹을 씌우는 작업을 함으로써 현 확률보다 높은 확률로 정상적으로 이미지가 추출될 수 있도록 시험해 볼 것이다.

  • PDF

Learning-based Automatic Keyphrase Indexing from Korean Scientific LIS Articles (자동색인을 위한 학습기반 주요 단어(핵심어) 추출에 관한 연구)

  • Kim, Hea-Jin;Jeoung, Yoo-Kyung
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2017.08a
    • /
    • pp.15-18
    • /
    • 2017
  • 학술 데이터베이스를 통해 방대한 양의 텍스트 데이터에 대한 접근이 가능해지면서, 많은 데이터로부터 중요한 정보를 자동으로 추출하는 것에 대한 필요성 또한 증가하였다. 특히, 텍스트 데이터로부터 중요한 단어나 단어구를 선별하여 자동으로 추출하는 기법은 자료의 효과적인 관리와 정보검색 등 다양한 응용분야에 적용될 수 있는 핵심적인 기술임에도, 한글 텍스트를 대상으로 한 연구는 많이 이루어지지 않고 있다. 기존의 한글 텍스트를 대상으로 한 핵심어 또는 핵심어구 추출 연구들은 단어의 빈도나 동시출현 빈도, 이를 변형한 단어 가중치 등에 근거하여 핵심어(구)를 식별하는 수준에 그쳐있다. 이에 본 연구는 한글 학술논문의 초록으로부터 추출한 다양한 자질 요소들을 학습하여 핵심어(구)를 추출하는 모델을 제안하였고 그 성능을 평가하였다.

  • PDF

Trend-based Trend News Recommendation Scheme (트위터 기반의 트렌드 뉴스 추천 기법)

  • Kim, Daeyong;Kim, Daehoon;Hwang, Eenjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.1038-1039
    • /
    • 2013
  • 최근 스마트폰의 사용이 보편화되면서 많은 양의 온라인 뉴스가 다양한 경로를 통하여 서비스되고 있다. 한편, 실시간으로 제공되는 뉴스의 양이 방대해지면서, 언론사에서 톱 뉴스로 제공하는 토픽과 달리, 실제 사용자들에게 화제가 되고 있는 토픽을 선별하는 데 어려움이 있다. 많은 사용자들이 실생활에서 작성하고 공유하는 트위터는 실제 사람들 사이에 화제가 되고 있는 토픽을 담고 있는 경우가 많다. 이러한 트렌드를 뉴스와 연계시키면 화제가 되는 트렌드 뉴스를 사용자에게 제공할 수 있다. 본 논문에서는 클라이언트-서버 모델을 기반으로 실시간으로 사용자 트위터를 분석하여 추출된 트렌드를 기반으로 관련 뉴스를 검색하여 제공하는 시스템을 제안한다. 클라이언트를 통해 수집한 트위터 단문에서 서버는 화제가 되고 있는 트렌드를 추출하고, 이를 기반으로 Google 등을 통해 관련 뉴스를 검색하여 클라이언트에게 전달한다. 이 모든 과정을 실시간으로 제공하기 위한 알고리즘을 제안하고 프로토타입 시스템을 통하여 그 성능을 평가한다.

Selective Iris Image Algorithms Using Discrete Cosine Transform (이산 코사인 변환 기법을 이용한 선택적인 홍채영상 알고리즘)

  • Kim, Chan Joong;Kim, Jai-Hoon;Choi, Bok Chun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1169-1172
    • /
    • 2010
  • 대부분의 홍채인식 시스템의 전반부를 살펴보면 카메라를 통한 이미지를 획득 후 전처리 과정에서 동공의 경계를 잡는 과정이 수행된다. 카메라를 통한 이미지 획득 시 초점이 좋은 이미지와 나쁜 이미지가 같이 획득이 된다. 초점이 나쁜 이미지는 동공의 경계를 잡는 과정에 있어서 좋은 이미지보다 시간이 오래 걸리기 마련이다. 이에 본 논문에서는 영상획득 후 동공의 경계를 잡는 과정 전에 DCT(Discrete Cosine Transform)를 이용한 선명도 측정하는 방법을 제안한다. 카메라를 통한 영상을 획득한 후 초점이 좋은 영상과 나쁜 영상을 구분하게 되고 초점이 좋은 영상만을 선택하여 다음 과정인 동공의 경계를 잡는 작업을 수행하게 된다. 제안하는 방법은 DCT를 이용한 이미지의 선별 작업에 시간이 소비 되지만 나쁜 영상을 이용하여 동공의 경계를 잡느라 걸리는 시간을 줄일 수 있는 장점을 기대할 수 있다. 우선적으로 수학적 분석을 통하여 23%의 속도 절감을 통한 성능 개선의 가능성을 보였고, 실제 구현을 통하여 속도 향상이 기대된다.

Design of Automation (RPA) for uploading workout videos to YouTube highlights through deep learning facial expression recognition (딥러닝 표정 인식을 통한 운동 영상 유튜브 하이라이트 업로드 자동화(RPA) 설계)

  • Shin, Dong-Wook;Moon, NamMee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.655-657
    • /
    • 2022
  • 본 논문은 유튜브에 업로드 된 운동 영상을 시청하는 사람의 얼굴 영역을 YoloV3을 이용하여 얼굴 영상에서 눈 및 입술영역을 검출하는 방법을 연구하여, YoloV3은 딥 러닝을 이용한 물체 검출 방법으로 기존의 특징 기반 방법에 비해 성능이 우수한 것으로 알려져 있다. 본 논문에서는 영상을 다차원적으로 분리하고 클래스 확률(Class Probability)을 적용하여 하나의 회귀 문제로 접근한다. 영상의 1 frame을 입력 이미지로 CNN을 통해 텐서(Tensor)의 그리드로 나누고, 각 구간에 따라 객체인 경계 박스와 클래스 확률을 생성해 해당 구역의 눈과 입을 검출한다. 검출된 이미지 감성 분석을 통해, 운동 영상 중 하이라이트 부분을 자동으로 선별하는 시스템을 설계하였다.

Network intrusion detection Model through Hybrid Feature Selection and Data Balancing (Hybrid Feature Selection과 Data Balancing을 통한 네트워크 침입 탐지 모델)

  • Min, Byeongjun;Shin, Dongkyoo;Shin, Dongil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.526-529
    • /
    • 2020
  • 최근 네트워크 환경에 대한 공격이 급속도로 고도화 및 지능화 되고 있기에, 기존의 시그니처 기반 침입탐지 시스템은 한계점이 명확해지고 있다. 이러한 문제를 해결하기 위해서 기계학습 기반의 침입 탐지 시스템에 대한 연구가 활발히 진행되고 있지만 기계학습을 침입 탐지에 이용하기 위해서는 두 가지 문제에 직면한다. 첫 번째는 실시간 탐지를 위한 학습과 연관된 중요 특징들을 선별하는 문제이며 두 번째는 학습에 사용되는 데이터의 불균형 문제로, 기계학습 알고리즘들은 데이터에 의존적이기에 이러한 문제는 치명적이다. 본 논문에서는 위 제시된 문제들을 해결하기 위해서 Hybrid Feature Selection과 Data Balancing을 통한 심층 신경망 기반의 네트워크 침입 탐지 모델을 제안한다. NSL-KDD 데이터 셋을 통해 학습을 진행하였으며, 평가를 위해 Accuracy, Precision, Recall, F1 Score 지표를 사용하였다. 본 논문에서 제안된 모델은 Random Forest 및 기본 심층 신경망 모델과 비교해 F1 Score를 기준으로 7~9%의 성능 향상을 이루었다.

Explaining predictions of Recurrent Neural Network in Sentiment Analysis (감성분석에서 순환신경망의 예측 설명)

  • Bae, Jangseong;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.125-130
    • /
    • 2019
  • 최근 순환신경망은 여러 자연어처리 분야에서 좋은 성능을 보이고 있다. 하지만 순환신경망의 복잡한 네트워크 구조 때문에 순환신경망이 어떠한 근거로 예측 결과를 제시했는지 해석하기 어려운 문제점이 있다. 따라서, 순환신경망이 적용된 자연어처리 시스템이 도출한 결과의 타당성을 제공하고 자연어처리 시스템에 중요한 자질을 선별하기 위한 연구가 필요하다. 본 논문에서는 자연어처리 분야의 하나인 감성분석에서 순환신경망의 예측을 분석한다. 학습된 감성분석 시스템의 예측을 해석하기 위해 입력 자질에 대한 민감도 분석을 수행하고 이를 어텐션 메커니즘과 비교하고 그 결과에 대해 설명한다.

  • PDF

Entity-oriented Sentence Extraction and Relation-Context Co-attention for Document-level Relation Extraction (문서 수준 관계 추출을 위한 개체 중심 문장 추출 및 Relation-Context Co-attention 방법)

  • Park, SeongSik;Kim, HarkSoo
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.9-13
    • /
    • 2020
  • 관계 추출은 주어진 문장이나 문서에 존재하는 개체들 간의 의미적 관계를 찾아내는 작업을 말한다. 최근 문서 수준 관계 추출 말뭉치인 DocRED가 공개되면서 문서 수준 관계 추출에 대한 연구가 활발히 진행되고 있다. 또한 사전 학습된 Masked Language Model(MLM)이 자연어처리 분야 전체에 영향력을 보이면서 관계 추출에서도 MLM을 사용하는 연구가 진행되고 있다. 그러나 문서 수준의 관계 추출은 문서의 단위가 길기 때문에 Self-attention을 기반으로 하는 MLM을 사용하면 모델의 계산량이 증가하는 문제가 있다. 본 논문은 이 점을 보완하기 위해 관계 추출에 필요한 문장을 선별하는 간단한 전처리 방법을 제안한다. 또한 문서의 길이에 상관없이 관계 추출에 필요한 어휘 정보를 자동으로 습득 할 수 있는 Relation-Context Co-attention 방법을 제안한다. 제안 모델은 DocRED 말뭉치에서 Dev F1 62.01%, Test F1 59.90%로 높은 성능을 보였다.

  • PDF