Brake disks for rolling stock are exposed to thermal fatigue during braking, and thermal cracks occur on surface of disks. Thermal cracks can cause serious accidents, deterioration of braking performance and increase of maintenance cost due to frequent exchange of friction materials. In this study, candidate materials with high-heat resistance were selected by searching the literature. By using cast specimens made of the candidate materials, chemical composition, crystal structure and graphite type were analyzed. In addition, friction coefficient and wear were measured and compared with values for the disk material in service. As a result, it was shown that the NiCrMo has highest tensile strength and lowest friction coefficient and the disk material in service has the most stable friction characteristics.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.5
/
pp.718-723
/
2008
Bearing is one of the important mechanical elements used in various industrial equipments. Most of failures occurred during the equipment operation result from bearing defects and breakages. Therefore, monitoring of bearings is essential in preventing equipment breakdowns and reducing unexpected loss. The purpose of this paper is to present an online monitoring method to predict bearing states using vibration signals. Bearing vibrations, which are collected as a form of profile signal, are first analyzed by a discrete wavelet transform. Next, some statistical features are obtained from the resultant wavelet coefficients. In order to select significant ones among them, analysis of variance (ANOVA) is employed in this paper. Statistical features screened in this way are used as input variables to support vector machine (SVM). An hierarchical SVM tree is proposed for dealing with multi-class problems. The result of numerical experiments shows that the proposed SVM tree has a competent performance for classifying bearing fault states.
Journal of the Korea Institute of Information Security & Cryptology
/
v.28
no.5
/
pp.1153-1160
/
2018
As the number of online game users increases and the market size grows, various kinds of cheating are occurring. Game bots are a typical illegal program that ensures playtime and facilitates account leveling and acquisition of various goods. In this study, we propose a method to detect game bots based on user action time interval (ATI). This technique observes the behavior of the bot in the game and selects the most frequent actions. We distinguish between normal users and game bots by applying Machine Learning to feature frequency, ATI average, and ATI standard deviation for each selected action. In order to verify the effectiveness of the proposed technique, we measured the performance using the actual log of the 'Aion' game and showed an accuracy of 97%. This method can be applied to various games because it can utilize all actions of users as well as character movements and social actions.
It is hard to represent massive terrain data in real-time even using recent graphics hardware. In order to process massive terrain data, mesh simplification method such as continuous Level-of-Detail is commonly used. However, existing GPU-based methods using quad-tree structure such as geometry splitting, produce lots of vertices to traverse the quad-tree and retransmit those vertices back to the GPU in each tree traversal. Also they have disadvantage of increase of tree size since they construct the tree structure using texture. To solve the problem, we proposed GPU-base chunked LOD technique for real-time terrain rendering. We restrict depth of tree search and generate chunks with tessellator in GPU. By using our method, we can efficiently render the terrain by generating the chunks on GPU and reduce the computing time for tree traversal.
Accurate forecasting enables to effectively prepare for future phenomenon. Especially, meteorological phenomenon is closely related with human life, and it can prevent from damage such as human life and property through forecasting of weather and disaster that can occur. To respond quickly and effectively to oil spill accidents, it is important to accurately predict the movement of oil spills and the weather in the surrounding waters. In this paper, we selected four representative machine learning techniques: support vector machine, Gaussian process, multilayer perceptron, and radial basis function network that have shown good performance and predictability in the previous studies related to oil spill detection and prediction in meteorology such as wind, rainfall and ozone. we suggest the applicability of oil spill prediction model based on machine learning.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.4
/
pp.525-531
/
2009
Data mining is the process of extracting hidden patterns from collected data. At this time, for collected data which take important role as the basic information for prediction and recommendation, the process to discriminate incorrect data in order to enhance the performance of analysis result, is needed. The existing methods to discriminate unexpected data from collected data, mainly relies on methods which are based on statistics or simple distance between data. However, for these methods, the problematic point that even meaningful data could be excluded from analysis due that the environment and characteristic of the relevant data are not considered, exists. This study proposes a method to endow human heuristic knowledge with weight value through the comparison between collected data and human heuristic knowledge, and to use the value for creating a decision tree. The data discrimination by the method proposed is more credible as human knowledge is reflected in the created tree. The validity of the proposed method is verified through an experiment.
Agrobacterium tumefaciens KU12 isolated from Korea is able to induce tumors on various plants and catabolize octopine as a sole carbon and nitrogen source. A, tumefaciens KU12 contains three plasmids. Their sizes are 45.5 kb. 240 kb. and > 240 kb. respectively. For the purpose of identification of octopine type Ti plasmid, avirulent A, tumefacients A136 is transformed with plasmids isolated from KU12 by direct transformation. Transformants containing Ti plasmid were grown on AB medium containing octopine as a sole nitrogen source. The isolated strain, named KU911, contains only 240 kb plasmid. As a result of induction of crown gall and Southern hybridization with other octopine Ti plasmid pTiAch5, 240 kb plasmid named pTiKU12 was Ti plasmid.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.1
/
pp.147-154
/
2018
In this paper, we propose methods to acquire enemy object information, which is frequently required in multi-resolution model based war game and affects the simulation performance. In the information request method, a multi-resolution model selects information of a specific resolution and provides them to external objects. In the information announcement method, a multi-resolution model announces all information, and external objects select information of a specific resolution. In the information sharing method, external objects obtains information of a specific resolution by inquiring all information of a multi-resolution model which are stored in a shared space. Simulation results show that the information sharing method is more efficient than the information request method and the information announcement method because the information acquisition is fast. In addition, the proposed methods will increase the efficiency of war game operation by shortening the time for acquiring enemy forces' information.
Kim, Jin-Gyu;Nam, Ji-Seon;Seo, Yong-Myeong;Jeon, Sang-Min;Mcbride, Steve;Larson, Davin;Jin, Ho;Seon, Jong-Ho;Lee, Dong-Hun;Lin, Robert P.;Harvey, Peter
Bulletin of the Korean Space Science Society
/
2010.04a
/
pp.37.5-38
/
2010
경희대학교 우주탐사학과에서는 우주공간 탐사를 위해 Trio(TRiplet Ionospheric Observatory)-CINEMA(Cubesat for Ions, Neutrals, Electrons and MAgnetic fields)로 명명된 초소형 위성을 개발하고 있다. 과학임무는 지구 저궤도에서 고에너지 입자를 관측하는 것이며, 이를 위해 고에너지 (2~300keV) 입자 검출기와 자기장 측정기가 탑재된다. 저에너지 입자 검출기 시스템인 STEIN(SupraThermal Electrons, Ions, Neutrals)은 $1\times4$ Array의 개선된 실리콘 검출기와 이온, 전자, 중성입자를 분리할 수 있는 정전장 편향기, 그리고 신호를 처리하는 전자회로로 구성되어있다. 설계된 전자회로는 매우 작은 검출기 기판, 아날로그 기판과 디지털 기판으로 이루어져 있고, 475mW 이하의 저 전력으로 동작한다. 또한 2~100keV의 에너지를 1keV이하의 해상도로 30,000event/sec/pixel 까지 관측 할 수 있도록 회로를 설계하였다. 센서로 들어온 입자로 인해 발생한 펄스의 신호는 4개의 아날로그 회로가 담당하게 되는데, Folded cascode amplifier를 배치하여 증폭률을 높인 Charge sensitive amplifier를 통해 신호를 증폭하고, $2{\mu}s$ unipolar gaussian shaping amplifier를 통해 읽기 쉽게 처리된 신호를 상한파고선별기와 하한파고 선별기를 통해 유효 값 여부를 판단하고, 피크 검출기를 통해 피크의 타이밍을 측정한 뒤 신호를 아날로그-디지털 변환 회로를 통하여 8bit의 값으로 나타내어, 입자들의 Spectrum을 측정하게 된다. 크기와 소비전력이 적음에도 검출성능이 우수하기 때문에 이 시스템은 향후 우주탐사 시스템에 있어 매우 중요한 역할을 수행 할 것으로 생각한다.
Due to the rapid advancement and distribution of smart devices of late, document data on the Internet is on the sharp increase. The increment of information on the Web including a massive amount of documents makes it increasingly difficult for users to understand corresponding data. In order to efficiently summarize documents in the field of automated summary programs, various researches are under way. This study uses TextRank algorithm to efficiently summarize documents. TextRank algorithm expresses sentences or keywords in the form of a graph and understands the importance of sentences by using its vertices and edges to understand semantic relations between vocabulary and sentence. It extracts high-ranking keywords and based on keywords, it extracts important sentences. To extract important sentences, the algorithm first groups vocabulary. Grouping vocabulary is done using a scale of specific weight. The program sorts out sentences with higher scores on the weight scale, and based on selected sentences, it extracts important sentences to summarize the document. This study proved that this process confirmed an improved performance than summary methods shown in previous researches and that the algorithm can more efficiently summarize documents.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.