• Title/Summary/Keyword: 선박조종성

Search Result 206, Processing Time 0.026 seconds

Design of Neural-Network Based Autopilot Control System (I) (신경망을 이용한 선박용 자동조타장치의 제어시스템 설계 (I))

  • Kwak, Moon Kyu;Suh, Sang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.56-63
    • /
    • 1997
  • This paper is concerned with the design of neural-network based autopilot control system. In this paper, the back-propagation algorithm is introduced and explained in detail. The system identification method based on neural networks for ship motion is developed and its efficacy is verified by using a simple ship maneuvering model. Problems which may arise in a complex maneuvering model are then discussed. The neural-network based system identification method developed in this paper can be used effectively for reconstructing the ship maneuvering moodel which is known to have nonlinearity.

  • PDF

경인항 인천갑문 입출거시 예선사용기준에 관한 연구

  • Kim, Jong-Seong;Kim, Se-Won;Park, Yeong-Su;Yun, Gwi-Ho;Kim, Jong-Gwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.55-57
    • /
    • 2011
  • 경인 아라뱃길이 2011년 10월 개장을 앞두고 있다. 경인 아라뱃길이 시작되는 경인항 서해갑문 입출거시 예선사용기준에 대한 연구는 선박운항의 경제성 측면에서 매우 중요한 의미를 지닌다고 할 수 있다. 통상 선박의 크기(톤수)에 따른 예선의 소요마력 및 사용 척수는 대상선박의 크기, 모양, 접근수로, 부두시설의 위치 및 종류, 기타 환경조건 등의 영향을 받으며, 선체에 작용하는 수면상부의 풍압력과 수면하부의 유압력을 고려하여 규정하고 있다. 따라서 본 연구에서는 국내외 예선 규정 및 대상선박에 대한 예선 조종시뮬레이션을 통하여 경인항 서해갑문 입출거시 사용되는 예선의 기준을 설정하였다.

  • PDF

A Study on the Marine Traffic Risk Assessment by using Ship Handling Simulator (선박조종 시뮬레이터를 이용한 해상교통 위험도 평가에 관한 연구)

  • Park, Young-Soo;Kim, Jong-Sung;Kim, Chol-Seong;Yong, Jeong-Jae;Lee, Hyong-Ki;Jeong, Eun-Seok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.138-144
    • /
    • 2013
  • Large and small marine accidents which are related to vessel's navigation are happening continuously and these maritime accidents have caused loss of lives and properties, and serious maritime environmental pollution damage. It is also true that maritime pollution damage is increasing due to these accidents, probability of growth of seaborne volume and complicated maritime traffic environment. Korea, recently, is developing an evaluation index which can assess sea risk through the evaluation of maritime traffic environment and provide danger and general information with relation to maritime traffic environment on target sea area to evaluate maritime traffic safety. In this paper, we intend to confirm the validity of maritime traffic safety on the basis of vessel navigator's risk consciousness and various sailing conditions by using the ship handling simulator. To confirm the validity of sailing vessel's maritime traffic safety, we use analysis of variance. By using analysis of variance, we analyze vessel navigator's characteristics, distance, speed and encounter type between vessels. Through multiple comparison of each factor's risk difference, we can confirm the change of numerical value of risk difference in statistical aspect.

Saudi Rabigh Port Jetty #2 건설 선박운항 안전성평가

  • Baek, Mi-Seon;Seo, Tae-Ho;Gong, In-Yeong;Sin, Su-Yeon;Jeong, Mi-Hyeon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.518-520
    • /
    • 2013
  • Saudi Rabigh Port 남측에 Rabigh Jetty #2를 건설하려는 계획에 따라 20,000 DWT급 Tanker 부터 120,000 DWT Tanker의 계류가 가능한 부두 1선석이 건설될 예정이다. 이러한 해외 항만 건설에 대한 선박운항안전성 평가를 위하여 국내 해상교통안전진단 시행지침을 적용하여 수행하였으며 이에 대한 평가 사례를 소개하고자 한다.

  • PDF

A Study on the Ship Channel Design Method using Variable Bumper Area Model (I) (가변범퍼영역모델을 이용한 항로설계기법(I))

  • Jeong Dae-Deug;Lee Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.9-15
    • /
    • 2005
  • To design ship channel is one of important factors for planning and developing a port. In most case, the core factors for designing ship channel are the layout and width of channel provided the net underkeel clearance is secured to be safe enough to pass. In this study, Variable Bumper Area(VBA) model is applied to design and assess ship channel. This model reflects ship's particular, ship domain theory, ship speed and mariner's ship handling skill and experience, especially external forces which cause leeway, set and drift and the change of ship maneuvering characteristics. A real time, full mission shiphandling simulator is used to analyze ship dynamic data according to mariner's ship control, external forces, ete. This model defines Domain degree and Domain-index for assessing the efficiency and safety of the channel. The proposed model is applied to Ulsan new port plan which has a channel width of 1.5 times the length of the largest vessel, a radius of 5 times the length of the largest vessel in a curve of 57 degree centerline angle and SBM facility adjacent to the lateral edge of channel. The result of this study shows that the width of the channel and radius of channel curve are suitable for the target ship but the difficulty of ship handling is caused by the large course change and SBM located in the vicinity of channel.

Theoretical Analysis of Linear Maneuvering Coefficients with Water Depth Effect (수심의 영향을 고려한 선형(線形) 조종성 계수의 이론적 해석)

  • In-Young Gong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.47-58
    • /
    • 1994
  • Theoretical calculations are carried out for the estimation of linear maneuvering coefficients of a ship moving in shallow water region. Hydrodynamic forces and moments acting on a maneuvering ship are modelled based on a slender body theory, from which integro-differential equation for the unknown inner stream velocity is derived. Numerical algorithms fur solving this equation are described in detail. By considering water depth effects in the mathematical model, variations of maneuvering coefficients with water depth are studied. Programs are developed according to this method and calculations are done for Mariner, Series 60 and Wigley hull forms. For the verification of the programs, calculated results are compared with some analytic solutions and with published experimental results, which show good agreements in spite of many assumptions included in the mathematical model. It is expected that this method can be used as a preliminary tool for the estimation of maneuverability coefficients of a ship in shallow water region at its initial design stage.

  • PDF

A Study on Practical PMM Test Technique for Ship Maneuverability Using System Identification Method (선박의 조종성능 추정에 있어서 시스템식별법을 이용한 PMM 시험 기법에 대한 연구)

  • 이태일;권순홍
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.25-31
    • /
    • 2002
  • A system identification method is introduced to increase the prediction accuracy of a ship's maneuverability in PMM test, analysis. To improve the accuracy of linear hydrodynamic coefficients, the analysis techniques of pure sway and yaw tests are developed, and confirmed. In the analysis of sway tests, accuracy to linear hydrodynamic coefficients depends on the frequency of sway motion. To obtain nonlinear hydrodynamic coefficients for large drift angles, a combined yaw test is introduced. Using this system identification method, runs of PMM test can be reduced while retaining sufficient accuracy, compared to the Fourier integration method. Through the comparisons with sea trial results and the Fourier integration method, the accuracy and efficiency of the newly proposed system identification method, based on least square method, has been validated.

A Study on the Automatic Control for Collision Avoidance of the Ships (선박의 충돌회피를 위한 자동제어에 관한 기초적 연구)

  • Lee, Seung-Keon;Kwon, Bae-Jun
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • The collisions of vessel at sea show high among the whole marine accidents. Especially, the accidents of fishing vessels take the largest portion of the collisions. Therefore, a technique to reduce these accidents should be developed. The automatic control for avoiding collision suggested in this study consists of two steps. The first is recognizing collision risk with fuzzy Theory and the other is maneuvering the model ship on the basis of collision risk calculated from the first step. The information form the position and estimated time of collision point(DCPA and TCPA) is used to assess the collision risk. To verify this system, a fishing vessel was simulated according to MMG mathematical model. The simulations result shows quite good application in avoiding the collision of ship.