• Title/Summary/Keyword: 선량당량

Search Result 55, Processing Time 0.017 seconds

A New Approach for the Calculation of Neutron Dose Equivalent Conversion Coefficients for PMMA Slab Phantom (PMMA 평판형 팬텀에서의 중성자 선량당량 환산계수의 새로운 계산법)

  • Kim, Jong-Kyung;Kim, Jong-Oh
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.297-311
    • /
    • 1996
  • ANSI decided PMMA slab phantom as a calibration phantom and introduced a conversion coefficient calculation method for it. For photon, the conversion coefficient can be obtained by using backscatter factor and conversion coefficient of the ICRU tissue cube and backscatter factor of the PMMA slab. For neutron, however, the ANSI has not introduced any conversion coefficient calculation method for the PMMA slab. In this work, the ANSI method for the photon conversion coefficient calculation was applied to the neutron conversion coefficient calculation of the PMMA slab. Quality weighted tissue kerma of neutron was applied to calculate the backscatter factors on the ICRU cube and the PMMA slab. The dose conversion coefficient of the ICRU cube was also calculated by using MCNP code. Then, the dose conversion coefficient of the PMMA slab was calculated from two backscatter factors and the dose conversion coefficient of the ICRU cube. The discrepancies of the dose conversion coefficients of the PMMA slab and the ICRU cube were less than 10% except 1eV(20%), 1keV(17%), and 4 MeV(16%).

  • PDF

Neutron Personal Dose Equivalent Evaluation Using Panasonic UD-809P Type TLD Albedo Dosimeters (Panasonic UD-809P 알비도 열형광선량계를 이용한 중성자 개인선량당량 평가)

  • Shin, Sang-Woon;Son, Joong-Kwon;Jin, Hua
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.3
    • /
    • pp.143-154
    • /
    • 1999
  • Panasonic UD-809P type albedo neutron TL dosimeters mounted on a water phantom were used to measure neutron personal dose equivalent in a Korean nuclear power plant. From the measured TL readings, personal dose equivalents from thermal, epithermal and fast neutrons were evaluated by using a method adopted in a neutron dose calculation algorithm for Panasonic UD-809P type albedo neutron TL dosimeters, which was suggested in a Panasonic TLD System User's Manual. The results showed that personal dose equivalent from fast neutrons could not be adequately evaluated in a field with high thermal neutron fraction to be encountered in a nuclear power plant. This seems to be related to the incomplete incidence of albedo thermal neutrons to the TL dosimeters. In order to evaluate appropriately the personal dose equivalent from fast neutrons in the field condition, new method fer the neutron dose calculation algorithm was suggested. In this new method, neutrons are grouped into thermal neutrons and fast neutrons. For each neutron component, equations for TL response, sensitivity factor, calibration factor and personal dose equivalent were derived.

  • PDF

Derivation of a Monte Carlo Estimator for Dose Equivalent (몬테칼로법을 위한 선량당량 산정법의 도출)

  • Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.2
    • /
    • pp.89-95
    • /
    • 1985
  • An alternative estimator for dose equivalent was derived. The original LET distribution concept was transformed into a charged particle fluence spectrum concept along with the definition of an average quality factor named slowing-down averaged quality factor by adopting the continuous slowing down approximation. With the alternative estimator, the dose equivalent delivered into a receptor located in a given radiation field can be directly and conveniently estimated in a Monte Carlo procedure. The slowing-down averaged quality factors for the energy range below 10 MeV were evaluated and tabulated for the charged particles which may be generated from the interactions of neutron with the nuclei composing soft tissue.

  • PDF

Definition and Difference between Dose Equivalent and Equivalent Dose in Radiation Dose Measurement and Evaluation (방사선량의 측정, 평가에서 선량당량(dose equivalent)과 등가선량(equivalent dose)의 정의 및 차이)

  • Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 1993
  • In its recent recommendation No. 60(1990), ICRP has newly introduced several terminology which had not existed in its prior recommendation No. 26(1977). Of these, a newly defined quantity 'Equivalent Dose' replacing the 'Dose Equivalent' of the ICRU concept has been recommended to be adopted in the radiation protection programme. However, since the committee still uses the 'Dose Equivalent' and 'Equivalent Dose' in its several publications, it is likely to provoke unnecessary confusions and misuses in applying these two quantities. In this paper were described the definition and difference between these two quantities to help in understanding of these two quantitites among the person involved in the radiation protection activities.

  • PDF

Dosimetric Quantities for 300 keV Neutrons (300 keV 중성자(中性子)에 대한 방사선량(放射線量) 관계량(關係量)의 산정(算定))

  • Lee, Soo-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.37-43
    • /
    • 1986
  • Dosimetric quantities for 300 keV neutrons in the ICRU standard tissue sphere were evaluated. The Monte Carlo code NEDEP which performs neutron-photon-charged particles coupled transport was used in the direct estimation of absorbed dose and dose equivalent. Some important quantities calculated are as follows; Deep dose equivalent index $H_{I,d}:1.78{\times}10^{11}\;Sv-cm^2$ Shallow dose equivalent index $H_{I,s}:2.08{\times}10^{-11}\;Sv-cm^2$ Ambient dose equivalent $H^*(0.07):1.7{\times}10^{-11}\;Sv-cm^2$ Ambient dose equivalent $H^*(10):1.78{\times}10^{-11}\;Sv-cm^2$ Effective quality factor $\bar{Q}^*(10):12.4$

  • PDF

Effective Dose Equivalent due to Inhalation of Indoor Radon-222 Daughters in Korea (한국인의 라돈-222 자핵종 호흡 실효선량당량 평가)

  • Chang, Si-Young;Ha, Chung-Woo;Lee, Byoung-Hun
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 1991
  • Effective dose equivalents resulting from inhalation of indoor radon-222 daughters at 12 residential areas in Korea were assessed by a simple mathematical lung dosimetry model based on the measurements of long-term averaged radon concentrations at 340 dwellings. The long-term averaged indoor radon-222 concentrations and corresponding eqilibrium equivalent radon $concentration(EEC_{Rn})$ measured by passive time-integrating CR-39 radon cups are in the range of $33.82{\sim}61.42Bq/m^3(median\;:\;48.90Bq/m^3)$ and of $13.53{\sim}24.57Bq/m^3(median\;:\;19.55Bq/m^3)$, respectively. The effective dose equvalent conversion factor for the exposure to unit $EEC_{Rn}$ derived in this study was estimated $1.07{\times}10^{-5}mSv/Bq\;h\;m^{-3}$ for a reference adult and agreed well with those recommended by the ICRP and UNSCEAR. The annual average dose equivalent to the lung $(H_{LUNG})$ from inhalation exposure to measured $EEC_{Rn}$ was estimated to be 20.90 mSv and resulting effective dose $equivalent(H_E)$ was to be 1.25 mSv, which is about 50% of the natural radiation exposure of 2.40 mSv/y to the public reported by the UNSCEAR.

  • PDF

A Theoretical Calculation of Photon Dose Equivalent Conversion Factor For Extremity Dosimeter (말단선량계의 광자선량당량환산인자에 대한 이론적 계산)

  • Kim, Kwang-Pyo;Lee, Won-Keun;Kim, Jong-Su;Yoon, Yeo-Chang;Yoon, Suk-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.1
    • /
    • pp.41-50
    • /
    • 1996
  • In this study, the theoretical calculation of the air kerma-to-dose equivalent conversion factors was performed with a Monte Carlo N-Particle transport code for the two types of extremity phantom of the ANSI and the KAERI, respectively. Considering the distribution of absorbed dose due to the interaction of homogeneous Parallel broad beam of monoenergetic primary photons in the range between 15keV and 1.5MeV, the air kerma-to-dose equivalent conversion factors based on the kerma approximation were calculated. It is showed that all the theoretical conversion factors of the two types of the extremity phantom for the ANSI and the KAERI agree well with the experimental values of the ANSI N13.32 draft(1995) for each energy within 5.7%, maximum difference ratio, except for 13.6%, difference ratio in the case for the energy of less than 40keV. It is due to uncertainties of experiment occurred in the low X-ray energy range and geometry considered in the MCNP code.

  • PDF

A Calculation of Effective Dose Equivalent from Data of Environmental Monitoring around the Karlsruhe Nuclear Research Center (Karlsruhe 원자력연구소 주변의 환경방사능 측정자료로부터 실효선량당량계산)

  • Lee, Chang-Woo;Lee, Jeong-Ho;Wicke, A.
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.75-85
    • /
    • 1990
  • The dose calculations were carried out using environmental montoring data around Karlsruhe Nuclear Research Center(KfK). Ingestion of plant foods was the most important pathway, and the K-40 and Pb-210 natural radioisotopes in food were the most effective radiation source to man. The dose received from artificial nuclides were mostly emitted by gamma irradiation of Cs-134 and Cs-137 deposited on the ground. The effective dose equivalent in the KfK environment was far less than the dose equivalent limit recommended by ICRP.

  • PDF

A Evaluation of Effectiveness on Technetium-99m Syringe Shield ($^{99m}Tc$ 주사기 차폐기구의 대한 실효성 평가)

  • Cho, YongIn;Kang, SeSik;Kim, DongHyun;Kim, JungHun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.431-432
    • /
    • 2014
  • 본 연구는 핵의학과에서 사용하는 $^{99m}Tc$에서 방출되는 광자에너지에 대하여 거리에 따른 인체에 대한 선량당량을 평가하였다. 그 결과 주사기 차폐기구 유무에 따라 선량당량이 차이를 보였으며, 심부선량은 차폐를 하지 않은 경우 평균 $216.026{\mu}Gy/h$, 1 mm 텅스텐 차폐를 하였을 경우 평균 $4.240{\mu}Gy/h$, 2 mm 텅스텐의 경우 평균 0.124 uGy/h의 선량을 보였다. 이에 따라 주사기 차폐기구를 필수적으로 사용하여야 하며 종사자 개개인의 피폭 관리에 항상 유념하여야 한다. 또한 본 연구결과를 바탕으로 종사자의 피폭 감소 방안에 대한 연구가 지속적으로 이루어 져야할 것으로 생각된다.

  • PDF

말단팬텀에서 X-선 빔의 방향의존성에 관한 이론적 계산

  • 김광표;윤석철;윤여창;김종수;홍종숙
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.57-62
    • /
    • 1996
  • ANSI N13.32는 손목팬텀과 손가락팬텀에서 말단선량계의 특성조사를 위하여 방향의존성인자를 선량계의 성능평가에 적용하도록 권고하고 있다. 본 연구에서는 말단선량의 정확한 선량평가를 위하여 ANSI N13.32에 제안된 팬텀과 동일하게 모사하고 그 팬텀내의 7mg/$\textrm{cm}^2$ 깊이에서 단일에너지를 가진 광자의 선량당량환산인자 및 방향의존성인자를 MCNP 전산코드를 사용함으로써 계산하였다. 또한 본 연구의 최종목적인 ISO Narrow X-선 빔에 의해 조사된 손가락팬텀에서 선량당량환산인자 및 방향의존성인자를 도출하였다. 전산 수행한 결과 낮은 전압에서 발생된 X-선 빔인 경우, 팬텀의 주축을 따라 수평회전각이 증가할수록 방향의존성인자가 크게 감소하며, 한편 높은 전압에서 생성된 X-선 빔인 경우, 수평회전각이 증가할수록 방향의존성인자간 처음에는 근소하게 감소하지만 90。까지는 증가하고 있음을 알 수 있었다.

  • PDF