• Title/Summary/Keyword: 서포트 벡터

Search Result 338, Processing Time 0.023 seconds

Performance Evaluation of Attention-inattetion Classifiers using Non-linear Recurrence Pattern and Spectrum Analysis (비선형 반복 패턴과 스펙트럼 분석을 이용한 집중-비집중 분류기의 성능 평가)

  • Lee, Jee-Eun;Yoo, Sun-Kook;Lee, Byung-Chae
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.409-416
    • /
    • 2013
  • Attention is one of important cognitive functions in human affecting on the selectional concentration of relevant events and ignorance of irrelevant events. The discrimination of attentional and inattentional status is the first step to manage human's attentional capability using computer assisted device. In this paper, we newly combine the non-linear recurrence pattern analysis and spectrum analysis to effectively extract features(total number of 13) from the electroencephalographic signal used in the input to classifiers. The performance of diverse types of attention-inattention classifiers, including supporting vector machine, back-propagation algorithm, linear discrimination, gradient decent, and logistic regression classifiers were evaluated. Among them, the support vector machine classifier shows the best performance with the classification accuracy of 81 %. The use of spectral band feature set alone(accuracy of 76 %) shows better performance than that of non-linear recurrence pattern feature set alone(accuracy of 67 %). The support vector machine classifier with hybrid combination of non-linear and spectral analysis can be used in later designing attention-related devices.

  • PDF

Audio Segmentation and Classification Using Support Vector Machine and Fuzzy C-Means Clustering Techniques (서포트 벡터 머신과 퍼지 클러스터링 기법을 이용한 오디오 분할 및 분류)

  • Nguyen, Ngoc;Kang, Myeong-Su;Kim, Cheol-Hong;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.19-26
    • /
    • 2012
  • The rapid increase of information imposes new demands of content management. The purpose of automatic audio segmentation and classification is to meet the rising need for efficient content management. With this reason, this paper proposes a high-accuracy algorithm that segments audio signals and classifies them into different classes such as speech, music, silence, and environment sounds. The proposed algorithm utilizes support vector machine (SVM) to detect audio-cuts, which are boundaries between different kinds of sounds using the parameter sequence. We then extract feature vectors that are composed of statistical data and they are used as an input of fuzzy c-means (FCM) classifier to partition audio-segments into different classes. To evaluate segmentation and classification performance of the proposed SVM-FCM based algorithm, we consider precision and recall rates for segmentation and classification accuracy for classification. Furthermore, we compare the proposed algorithm with other methods including binary and FCM classifiers in terms of segmentation performance. Experimental results show that the proposed algorithm outperforms other methods in both precision and recall rates.

Development of Image Defect Detection Model Using Machine Learning (기계 학습을 활용한 이미지 결함 검출 모델 개발)

  • Lee, Nam-Yeong;Cho, Hyug-Hyun;Ceong, Hyi-Thaek
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.513-520
    • /
    • 2020
  • Recently, the development of a vision inspection system using machine learning has become more active. This study seeks to develop a defect inspection model using machine learning. Defect detection problems for images correspond to classification problems, which are the method of supervised learning in machine learning. In this study, defect detection models are developed based on algorithms that automatically extract features and algorithms that do not extract features. One-dimensional CNN and two-dimensional CNN are used as algorithms for automatic extraction of features, and MLP and SVM are used as algorithms for non-extracting features. A defect detection model is developed based on four models and their accuracy and AUC compare based on AUC. Although image classification is common in the development of models using CNN, high accuracy and AUC is achieved when developing SVM models by converting pixels from images into RGB values in this study.

A Study of the Feature Classification and the Predictive Model of Main Feed-Water Flow for Turbine Cycle (주급수 유량의 형상 분류 및 추정 모델에 대한 연구)

  • Yang, Hac Jin;Kim, Seong Kun;Choi, Kwang Hee
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.263-271
    • /
    • 2014
  • Corrective thermal performance analysis is required for thermal power plants to determine performance status of turbine cycle. We developed classification method for main feed water flow to make precise correction for performance analysis based on ASME (American Society of Mechanical Engineers) PTC (Performance Test Code). The classification is based on feature identification of status of main water flow. Also we developed predictive algorithms for corrected main feed-water through Support Vector Machine (SVM) Model for each classified feature area. The results was compared to estimations using Neural Network(NN) and Kernel Regression(KR). The feature classification and predictive model of main feed-water flow provides more practical methods for corrective thermal performance analysis of turbine cycle.

Fault Severity Diagnosis of Ball Bearing by Support Vector Machine (서포트 벡터 머신을 이용한 볼 베어링의 결함 정도 진단)

  • Kim, Yang-Seok;Lee, Do-Hwan;Kim, Dae-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.551-558
    • /
    • 2013
  • A support vector machine (SVM) is a very powerful classification algorithm when a set of training data, each marked as belonging to one of several categories, is given. Therefore, SVM techniques have been used as one of the diagnostic tools in machine learning as well as in pattern recognition. In this paper, we present the results of classifying ball bearing fault types and severities using SVM with an optimized feature set based on the minimum distance rule. A feature set as an input for SVM includes twelve time-domain and nine frequency-domain features that are extracted from the measured vibration signals and their decomposed details and approximations with discrete wavelet transform. The vibration signals were obtained from a test rig to simulate various bearing fault conditions.

Predictive Analysis of Problematic Smartphone Use by Machine Learning Technique

  • Kim, Yu Jeong;Lee, Dong Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.213-219
    • /
    • 2020
  • In this paper, we propose a classification analysis method for diagnosing and predicting problematic smartphone use in order to provide policy data on problematic smartphone use, which is getting worse year after year. Attempts have been made to identify key variables that affect the study. For this purpose, the classification rates of Decision Tree, Random Forest, and Support Vector Machine among machine learning analysis methods, which are artificial intelligence methods, were compared. The data were from 25,465 people who responded to the '2018 Problematic Smartphone Use Survey' provided by the Korea Information Society Agency and analyzed using the R statistical package (ver. 3.6.2). As a result, the three classification techniques showed similar classification rates, and there was no problem of overfitting the model. The classification rate of the Support Vector Machine was the highest among the three classification methods, followed by Decision Tree and Random Forest. The top three variables affecting the classification rate among smartphone use types were Life Service type, Information Seeking type, and Leisure Activity Seeking type.

A ProstateSegmentationofTRUS ImageusingSupport VectorsandSnake-likeContour (서포트 벡터와 뱀형상 윤곽선을 이용한 TRUS 영상의 전립선 분할)

  • Park, Jae Heung;Se, Yeong Geon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.101-109
    • /
    • 2012
  • In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound(TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation inTRUS images using support vectors and snake-like contour is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. Gabor filter bank for extracting the texture features has been implemented. A support vector machine(SVM) for training step has been used to get each feature of prostate and nonprostate. The boundary of prostate is extracted by the snake-like contour algorithm. The results showed that this new algorithm extracted the prostate boundary with less than 9.3% relative to boundary provided manually by experts.

Mixed effects least squares support vector machine for survival data analysis (생존자료분석을 위한 혼합효과 최소제곱 서포트벡터기계)

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.739-748
    • /
    • 2012
  • In this paper we propose a mixed effects least squares support vector machine (LS-SVM) for the censored data which are observed from different groups. We use weights by which the randomly right censoring is taken into account in the nonlinear regression. The weights are formed with Kaplan-Meier estimates of censoring distribution. In the proposed model a random effects term representing inter-group variation is included. Furthermore generalized cross validation function is proposed for the selection of the optimal values of hyper-parameters. Experimental results are then presented which indicate the performance of the proposed LS-SVM by comparing with a standard LS-SVM for the censored data.

Prediction of Assistance Force for Opening/Closing of Automobile Door Using Support Vector Machine (서포트 벡터 머신을 이용한 차량도어의 개폐 보조력 예측)

  • Yang, Hac-Jin;Shin, Hyun-Chan;Kim, Seong-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.364-371
    • /
    • 2016
  • We developed a prediction model of assistance force for the opening/closing of an automobile door depending on the condition of the parking ground. The candidates of the learning models for the operating assistance force were compared to determine the proper force according to the slope and user's force, etc. The reduced experimental model was developed to obtain learning data for the estimation model. The learning algorithm was composed to predict the assistance force to incorporate real assistance force data. Among these algorithms, an Artificial Neural Network (ANN) and Support Vector Machine(SVM) were applied and the adaptability was compared between these models. The SVM provided more adaptability for the learning process of the door assistance force prediction. This paper proposes a system for determining the assistance force to control a door motor to compensate for the deviation of required door force in the slope condition, as needed in the plane condition.